test_io_ply.py 31.3 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

3
import itertools
facebook-github-bot's avatar
facebook-github-bot committed
4
5
6
import struct
import unittest
from io import BytesIO, StringIO
7
from tempfile import NamedTemporaryFile, TemporaryFile
facebook-github-bot's avatar
facebook-github-bot committed
8

9
import numpy as np
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
10
import pytorch3d.io.ply_io
11
12
import torch
from common_testing import TestCaseMixin
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
from iopath.common.file_io import PathManager
14
from pytorch3d.io import IO
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
15
from pytorch3d.io.ply_io import load_ply, save_ply
16
17
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.structures import Meshes, Pointclouds
18
from pytorch3d.utils import torus
facebook-github-bot's avatar
facebook-github-bot committed
19
20


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
21
22
23
24
25
26
27
global_path_manager = PathManager()


def _load_ply_raw(stream):
    return pytorch3d.io.ply_io._load_ply_raw(stream, global_path_manager)


28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
CUBE_PLY_LINES = [
    "ply",
    "format ascii 1.0",
    "comment made by Greg Turk",
    "comment this file is a cube",
    "element vertex 8",
    "property float x",
    "property float y",
    "property float z",
    "element face 6",
    "property list uchar int vertex_index",
    "end_header",
    "0 0 0",
    "0 0 1",
    "0 1 1",
    "0 1 0",
    "1 0 0",
    "1 0 1",
    "1 1 1",
    "1 1 0",
    "4 0 1 2 3",
    "4 7 6 5 4",
    "4 0 4 5 1",
    "4 1 5 6 2",
    "4 2 6 7 3",
    "4 3 7 4 0",
]

CUBE_VERTS = [
    [0, 0, 0],
    [0, 0, 1],
    [0, 1, 1],
    [0, 1, 0],
    [1, 0, 0],
    [1, 0, 1],
    [1, 1, 1],
    [1, 1, 0],
]
CUBE_FACES = [
    [0, 1, 2],
    [7, 6, 5],
    [0, 4, 5],
    [1, 5, 6],
    [2, 6, 7],
    [3, 7, 4],
    [0, 2, 3],
    [7, 5, 4],
    [0, 5, 1],
    [1, 6, 2],
    [2, 7, 3],
    [3, 4, 0],
]


facebook-github-bot's avatar
facebook-github-bot committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
class TestMeshPlyIO(TestCaseMixin, unittest.TestCase):
    def test_raw_load_simple_ascii(self):
        ply_file = "\n".join(
            [
                "ply",
                "format ascii 1.0",
                "comment made by Greg Turk",
                "comment this file is a cube",
                "element vertex 8",
                "property float x",
                "property float y",
                "property float z",
                "element face 6",
                "property list uchar int vertex_index",
                "element irregular_list 3",
                "property list uchar int vertex_index",
                "end_header",
                "0 0 0",
                "0 0 1",
                "0 1 1",
                "0 1 0",
                "1 0 0",
                "1 0 1",
                "1 1 1",
                "1 1 0",
                "4 0 1 2 3",
                "4 7 6 5 4",
                "4 0 4 5 1",
                "4 1 5 6 2",
                "4 2 6 7 3",
                "4 3 7 4 0",  # end of faces
                "4 0 1 2 3",
                "4 7 6 5 4",
                "3 4 5 1",
            ]
        )
        for line_ending in [None, "\n", "\r\n"]:
            if line_ending is None:
                stream = StringIO(ply_file)
            else:
                byte_file = ply_file.encode("ascii")
                if line_ending == "\r\n":
                    byte_file = byte_file.replace(b"\n", b"\r\n")
                stream = BytesIO(byte_file)
            header, data = _load_ply_raw(stream)
            self.assertTrue(header.ascii)
            self.assertEqual(len(data), 3)
            self.assertTupleEqual(data["face"].shape, (6, 4))
            self.assertClose([0, 1, 2, 3], data["face"][0])
            self.assertClose([3, 7, 4, 0], data["face"][5])
132
133
            [vertex0] = data["vertex"]
            self.assertTupleEqual(vertex0.shape, (8, 3))
facebook-github-bot's avatar
facebook-github-bot committed
134
135
136
137
138
139
140
141
142
143
144
            irregular = data["irregular_list"]
            self.assertEqual(len(irregular), 3)
            self.assertEqual(type(irregular), list)
            [x] = irregular[0]
            self.assertClose(x, [0, 1, 2, 3])
            [x] = irregular[1]
            self.assertClose(x, [7, 6, 5, 4])
            [x] = irregular[2]
            self.assertClose(x, [4, 5, 1])

    def test_load_simple_ascii(self):
145
        ply_file = "\n".join(CUBE_PLY_LINES)
facebook-github-bot's avatar
facebook-github-bot committed
146
147
148
149
150
151
152
153
154
155
156
        for line_ending in [None, "\n", "\r\n"]:
            if line_ending is None:
                stream = StringIO(ply_file)
            else:
                byte_file = ply_file.encode("ascii")
                if line_ending == "\r\n":
                    byte_file = byte_file.replace(b"\n", b"\r\n")
                stream = BytesIO(byte_file)
            verts, faces = load_ply(stream)
            self.assertEqual(verts.shape, (8, 3))
            self.assertEqual(faces.shape, (12, 3))
157
158
159
160
161
162
            self.assertClose(verts, torch.FloatTensor(CUBE_VERTS))
            self.assertClose(faces, torch.LongTensor(CUBE_FACES))

    def test_pluggable_load_cube(self):
        """
        This won't work on Windows due to NamedTemporaryFile being reopened.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
163
        Use the testpath package instead?
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        """
        ply_file = "\n".join(CUBE_PLY_LINES)
        io = IO()
        with NamedTemporaryFile(mode="w", suffix=".ply") as f:
            f.write(ply_file)
            f.flush()
            mesh = io.load_mesh(f.name)
        self.assertClose(mesh.verts_padded(), torch.FloatTensor(CUBE_VERTS)[None])
        self.assertClose(mesh.faces_padded(), torch.LongTensor(CUBE_FACES)[None])

        device = torch.device("cuda:0")

        with NamedTemporaryFile(mode="w", suffix=".ply") as f2:
            io.save_mesh(mesh, f2.name)
            f2.flush()
            mesh2 = io.load_mesh(f2.name, device=device)
        self.assertEqual(mesh2.verts_padded().device, device)
        self.assertClose(mesh2.verts_padded().cpu(), mesh.verts_padded())
        self.assertClose(mesh2.faces_padded().cpu(), mesh.faces_padded())

        with NamedTemporaryFile(mode="w") as f3:
            with self.assertRaisesRegex(
                ValueError, "No mesh interpreter found to write to"
            ):
                io.save_mesh(mesh, f3.name)
            with self.assertRaisesRegex(
                ValueError, "No mesh interpreter found to read "
            ):
                io.load_mesh(f3.name)
facebook-github-bot's avatar
facebook-github-bot committed
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_save_too_many_colors(self):
        verts = torch.tensor(
            [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
        )
        faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
        vert_colors = torch.rand((4, 7))
        texture_with_seven_colors = TexturesVertex(verts_features=[vert_colors])

        mesh = Meshes(
            verts=[verts],
            faces=[faces],
            textures=texture_with_seven_colors,
        )

        io = IO()
        msg = "Texture will not be saved as it has 7 colors, not 3."
        with NamedTemporaryFile(mode="w", suffix=".ply") as f:
            with self.assertWarnsRegex(UserWarning, msg):
                io.save_mesh(mesh.cuda(), f.name)

    def test_save_load_meshes(self):
        verts = torch.tensor(
            [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
        )
        faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
219
220
221
        normals = torch.tensor(
            [[0, 1, 0], [1, 0, 0], [1, 4, 1], [1, 0, 0]], dtype=torch.float32
        )
222
223
224
        vert_colors = torch.rand_like(verts)
        texture = TexturesVertex(verts_features=[vert_colors])

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
225
        for do_textures, do_normals in itertools.product([True, False], [True, False]):
226
227
228
229
            mesh = Meshes(
                verts=[verts],
                faces=[faces],
                textures=texture if do_textures else None,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
230
                verts_normals=[normals] if do_normals else None,
231
232
233
234
235
236
237
238
239
240
241
242
            )
            device = torch.device("cuda:0")

            io = IO()
            with NamedTemporaryFile(mode="w", suffix=".ply") as f:
                io.save_mesh(mesh.cuda(), f.name)
                f.flush()
                mesh2 = io.load_mesh(f.name, device=device)
            self.assertEqual(mesh2.device, device)
            mesh2 = mesh2.cpu()
            self.assertClose(mesh2.verts_padded(), mesh.verts_padded())
            self.assertClose(mesh2.faces_padded(), mesh.faces_padded())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
243
244
245
246
247
248
249
250
251
252
            if do_normals:
                self.assertTrue(mesh.has_verts_normals())
                self.assertTrue(mesh2.has_verts_normals())
                self.assertClose(
                    mesh2.verts_normals_padded(), mesh.verts_normals_padded()
                )
            else:
                self.assertFalse(mesh.has_verts_normals())
                self.assertFalse(mesh2.has_verts_normals())
                self.assertFalse(torch.allclose(mesh2.verts_normals_padded(), normals))
253
254
255
256
257
258
            if do_textures:
                self.assertIsInstance(mesh2.textures, TexturesVertex)
                self.assertClose(mesh2.textures.verts_features_list()[0], vert_colors)
            else:
                self.assertIsNone(mesh2.textures)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def test_save_load_with_normals(self):
        points = torch.tensor(
            [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
        )
        normals = torch.tensor(
            [[0, 1, 0], [1, 0, 0], [1, 4, 1], [1, 0, 0]], dtype=torch.float32
        )
        features = torch.rand_like(points)

        for do_features, do_normals in itertools.product([True, False], [True, False]):
            cloud = Pointclouds(
                points=[points],
                features=[features] if do_features else None,
                normals=[normals] if do_normals else None,
            )
            device = torch.device("cuda:0")

            io = IO()
            with NamedTemporaryFile(mode="w", suffix=".ply") as f:
                io.save_pointcloud(cloud.cuda(), f.name)
                f.flush()
                cloud2 = io.load_pointcloud(f.name, device=device)
            self.assertEqual(cloud2.device, device)
            cloud2 = cloud2.cpu()
            self.assertClose(cloud2.points_padded(), cloud.points_padded())
            if do_normals:
                self.assertClose(cloud2.normals_padded(), cloud.normals_padded())
            else:
                self.assertIsNone(cloud.normals_padded())
                self.assertIsNone(cloud2.normals_padded())
            if do_features:
                self.assertClose(cloud2.features_packed(), features)
            else:
                self.assertIsNone(cloud2.features_packed())

294
295
296
297
298
    def test_save_ply_invalid_shapes(self):
        # Invalid vertices shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]])  # (V, 4)
            faces = torch.LongTensor([[0, 1, 2]])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
299
            save_ply(BytesIO(), verts, faces)
300
301
302
303
304
305
306
307
308
        expected_message = (
            "Argument 'verts' should either be empty or of shape (num_verts, 3)."
        )
        self.assertTrue(expected_message, error.exception)

        # Invalid faces shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
            faces = torch.LongTensor([[0, 1, 2, 3]])  # (F, 4)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
309
            save_ply(BytesIO(), verts, faces)
310
311
312
313
314
315
316
317
318
319
        expected_message = (
            "Argument 'faces' should either be empty or of shape (num_faces, 3)."
        )
        self.assertTrue(expected_message, error.exception)

    def test_save_ply_invalid_indices(self):
        message_regex = "Faces have invalid indices"
        verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([[0, 1, 2]])
        with self.assertWarnsRegex(UserWarning, message_regex):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
320
            save_ply(BytesIO(), verts, faces)
321
322
323

        faces = torch.LongTensor([[-1, 0, 1]])
        with self.assertWarnsRegex(UserWarning, message_regex):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
324
            save_ply(BytesIO(), verts, faces)
325
326

    def _test_save_load(self, verts, faces):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
327
        f = BytesIO()
328
329
330
331
332
333
334
335
        save_ply(f, verts, faces)
        f.seek(0)
        # raise Exception(f.getvalue())
        expected_verts, expected_faces = verts, faces
        if not len(expected_verts):  # Always compare with a (V, 3) tensor
            expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        if not len(expected_faces):  # Always compare with an (F, 3) tensor
            expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
336

337
338
        actual_verts, actual_faces = load_ply(f)
        self.assertClose(expected_verts, actual_verts)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
339
340
341
342
        if len(actual_verts):
            self.assertClose(expected_faces, actual_faces)
        else:
            self.assertEqual(actual_faces.numel(), 0)
343

David Novotny's avatar
David Novotny committed
344
345
346
347
348
349
350
351
    def test_normals_save(self):
        verts = torch.tensor(
            [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
        )
        faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
        normals = torch.tensor(
            [[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=torch.float32
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
352
        file = BytesIO()
David Novotny's avatar
David Novotny committed
353
354
355
        save_ply(file, verts=verts, faces=faces, verts_normals=normals)
        file.close()

356
357
358
359
360
    def test_contiguity_unimportant(self):
        verts = torch.rand(32, 3)
        self._test_save_load(verts, torch.randint(30, size=(10, 3)))
        self._test_save_load(verts, torch.randint(30, size=(3, 10)).T)

361
362
363
364
365
366
367
368
369
370
    def test_empty_save_load(self):
        # Vertices + empty faces
        verts = torch.tensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([])
        self._test_save_load(verts, faces)

        faces = torch.zeros(size=(0, 3), dtype=torch.int64)
        self._test_save_load(verts, faces)

        # Faces + empty vertices
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
371
        # => We don't save the faces
372
373
        verts = torch.FloatTensor([])
        faces = torch.LongTensor([[0, 1, 2]])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
374
        message_regex = "Empty 'verts' provided"
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        # Empty vertices + empty faces
        verts0 = torch.FloatTensor([])
        faces0 = torch.LongTensor([])
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces0)

        faces3 = torch.zeros(size=(0, 3), dtype=torch.int64)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces3)

        verts3 = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces0)

        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces3)

facebook-github-bot's avatar
facebook-github-bot committed
399
400
    def test_simple_save(self):
        verts = torch.tensor(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
401
            [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 2, 0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
402
403
        )
        faces = torch.tensor([[0, 1, 2], [0, 3, 4]])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        for filetype in BytesIO, TemporaryFile:
            lengths = {}
            for ascii in [True, False]:
                file = filetype()
                save_ply(file, verts=verts, faces=faces, ascii=ascii)
                lengths[ascii] = file.tell()

                file.seek(0)
                verts2, faces2 = load_ply(file)
                self.assertClose(verts, verts2)
                self.assertClose(faces, faces2)

                file.seek(0)
                if ascii:
                    file.read().decode("ascii")
                else:
                    with self.assertRaises(UnicodeDecodeError):
                        file.read().decode("ascii")

                if filetype is TemporaryFile:
                    file.close()
            self.assertLess(lengths[False], lengths[True], "ascii should be longer")
facebook-github-bot's avatar
facebook-github-bot committed
426

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
427
    def test_heterogeneous_property(self):
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        ply_file_ascii = "\n".join(
            [
                "ply",
                "format ascii 1.0",
                "element vertex 8",
                "property float x",
                "property int y",
                "property int z",
                "end_header",
                "0 0 0",
                "0 0 1",
                "0 1 1",
                "0 1 0",
                "1 0 0",
                "1 0 1",
                "1 1 1",
                "1 1 0",
            ]
        )
        ply_file_binary = "\n".join(
            [
                "ply",
                "format binary_little_endian 1.0",
                "element vertex 8",
                "property uchar x",
                "property char y",
                "property char z",
                "end_header",
                "",
            ]
        )
        data = [0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0]
        stream_ascii = StringIO(ply_file_ascii)
        stream_binary = BytesIO(ply_file_binary.encode("ascii") + bytes(data))
        X = np.array([[0, 0, 0, 0, 1, 1, 1, 1]]).T
        YZ = np.array([0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0])
        for stream in (stream_ascii, stream_binary):
            header, elements = _load_ply_raw(stream)
            [x, yz] = elements["vertex"]
            self.assertClose(x, X)
            self.assertClose(yz, YZ.reshape(8, 2))

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    def test_load_cloudcompare_pointcloud(self):
        """
        Test loading a pointcloud styled like some cloudcompare output.
        cloudcompare is an open source 3D point cloud processing software.
        """
        header = "\n".join(
            [
                "ply",
                "format binary_little_endian 1.0",
                "obj_info Not a key-value pair!",
                "element vertex 8",
                "property double x",
                "property double y",
                "property double z",
                "property uchar red",
                "property uchar green",
                "property uchar blue",
                "property float my_Favorite",
                "end_header",
                "",
            ]
        ).encode("ascii")
        data = struct.pack("<" + "dddBBBf" * 8, *range(56))
        io = IO()
        with NamedTemporaryFile(mode="wb", suffix=".ply") as f:
            f.write(header)
            f.write(data)
            f.flush()
            pointcloud = io.load_pointcloud(f.name)

        self.assertClose(
            pointcloud.points_padded()[0],
            torch.FloatTensor([0, 1, 2]) + 7 * torch.arange(8)[:, None],
        )
        self.assertClose(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
505
            pointcloud.features_padded()[0] * 255,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
            torch.FloatTensor([3, 4, 5]) + 7 * torch.arange(8)[:, None],
        )

    def test_save_pointcloud(self):
        header = "\n".join(
            [
                "ply",
                "format binary_little_endian 1.0",
                "element vertex 8",
                "property float x",
                "property float y",
                "property float z",
                "property float red",
                "property float green",
                "property float blue",
                "end_header",
                "",
            ]
        ).encode("ascii")
        data = struct.pack("<" + "f" * 48, *range(48))
        points = torch.FloatTensor([0, 1, 2]) + 6 * torch.arange(8)[:, None]
        features = torch.FloatTensor([3, 4, 5]) + 6 * torch.arange(8)[:, None]
        pointcloud = Pointclouds(points=[points], features=[features])

        io = IO()
        with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
            io.save_pointcloud(data=pointcloud, path=f.name)
            f.flush()
            f.seek(0)
            actual_data = f.read()
            reloaded_pointcloud = io.load_pointcloud(f.name)

        self.assertEqual(header + data, actual_data)
        self.assertClose(reloaded_pointcloud.points_list()[0], points)
        self.assertClose(reloaded_pointcloud.features_list()[0], features)

        with NamedTemporaryFile(mode="r", suffix=".ply") as f:
            io.save_pointcloud(data=pointcloud, path=f.name, binary=False)
            reloaded_pointcloud2 = io.load_pointcloud(f.name)
            self.assertEqual(f.readline(), "ply\n")
            self.assertEqual(f.readline(), "format ascii 1.0\n")
        self.assertClose(reloaded_pointcloud2.points_list()[0], points)
        self.assertClose(reloaded_pointcloud2.features_list()[0], features)

    def test_load_pointcloud_bad_order(self):
        """
        Ply file with a strange property order
        """
        file = "\n".join(
            [
                "ply",
                "format ascii 1.0",
                "element vertex 1",
                "property uchar green",
                "property float x",
                "property float z",
                "property uchar red",
                "property float y",
                "property uchar blue",
                "end_header",
                "1 2 3 4 5 6",
            ]
        )

        io = IO()
        pointcloud_gpu = io.load_pointcloud(StringIO(file), device="cuda:0")
        self.assertEqual(pointcloud_gpu.device, torch.device("cuda:0"))
        pointcloud = pointcloud_gpu.to(torch.device("cpu"))
        expected_points = torch.tensor([[[2, 5, 3]]], dtype=torch.float32)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
575
        expected_features = torch.tensor([[[4, 1, 6]]], dtype=torch.float32) / 255.0
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
576
577
578
        self.assertClose(pointcloud.points_padded(), expected_points)
        self.assertClose(pointcloud.features_padded(), expected_features)

facebook-github-bot's avatar
facebook-github-bot committed
579
580
581
    def test_load_simple_binary(self):
        for big_endian in [True, False]:
            verts = (
582
                "0 0 0 " "0 0 1 " "0 1 1 " "0 1 0 " "1 0 0 " "1 0 1 " "1 1 1 " "1 1 0"
facebook-github-bot's avatar
facebook-github-bot committed
583
584
585
586
587
588
589
590
591
592
593
594
595
            ).split()
            faces = (
                "4 0 1 2 3 "
                "4 7 6 5 4 "
                "4 0 4 5 1 "
                "4 1 5 6 2 "
                "4 2 6 7 3 "
                "4 3 7 4 0 "  # end of first 6
                "4 0 1 2 3 "
                "4 7 6 5 4 "
                "3 4 5 1"
            ).split()
            short_one = b"\00\01" if big_endian else b"\01\00"
596
            mixed_data = b"\00\00" b"\03\03" + (short_one + b"\00\01\01\01" b"\00\02")
facebook-github-bot's avatar
facebook-github-bot committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            minus_one_data = b"\xff" * 14
            endian_char = ">" if big_endian else "<"
            format = (
                "format binary_big_endian 1.0"
                if big_endian
                else "format binary_little_endian 1.0"
            )
            vertex_pattern = endian_char + "24f"
            vertex_data = struct.pack(vertex_pattern, *map(float, verts))
            vertex1_pattern = endian_char + "fdffdffdffdffdffdffdffdf"
            vertex1_data = struct.pack(vertex1_pattern, *map(float, verts))
            face_char_pattern = endian_char + "44b"
            face_char_data = struct.pack(face_char_pattern, *map(int, faces))
            header = "\n".join(
                [
                    "ply",
                    format,
                    "element vertex 8",
                    "property float x",
616
                    "property float32 y",
facebook-github-bot's avatar
facebook-github-bot committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                    "property float z",
                    "element vertex1 8",
                    "property float x",
                    "property double y",
                    "property float z",
                    "element face 6",
                    "property list uchar uchar vertex_index",
                    "element irregular_list 3",
                    "property list uchar uchar vertex_index",
                    "element mixed 2",
                    "property list short uint foo",
                    "property short bar",
                    "element minus_ones 1",
                    "property char 1",
                    "property uchar 2",
                    "property short 3",
                    "property ushort 4",
                    "property int 5",
                    "property uint 6",
                    "end_header\n",
                ]
            )
            ply_file = b"".join(
                [
                    header.encode("ascii"),
                    vertex_data,
                    vertex1_data,
                    face_char_data,
                    mixed_data,
                    minus_one_data,
                ]
            )
            metadata, data = _load_ply_raw(BytesIO(ply_file))
            self.assertFalse(metadata.ascii)
            self.assertEqual(len(data), 6)
            self.assertTupleEqual(data["face"].shape, (6, 4))
            self.assertClose([0, 1, 2, 3], data["face"][0])
            self.assertClose([3, 7, 4, 0], data["face"][5])

656
657
658
659
660
            [vertex0] = data["vertex"]
            self.assertTupleEqual(vertex0.shape, (8, 3))
            self.assertEqual(len(data["vertex1"]), 3)
            self.assertClose(vertex0, np.column_stack(data["vertex1"]))
            self.assertClose(vertex0.flatten(), list(map(float, verts)))
facebook-github-bot's avatar
facebook-github-bot committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

            irregular = data["irregular_list"]
            self.assertEqual(len(irregular), 3)
            self.assertEqual(type(irregular), list)
            [x] = irregular[0]
            self.assertClose(x, [0, 1, 2, 3])
            [x] = irregular[1]
            self.assertClose(x, [7, 6, 5, 4])
            [x] = irregular[2]
            self.assertClose(x, [4, 5, 1])

            mixed = data["mixed"]
            self.assertEqual(len(mixed), 2)
            self.assertEqual(len(mixed[0]), 2)
            self.assertEqual(len(mixed[1]), 2)
            self.assertEqual(mixed[0][1], 3 * 256 + 3)
            self.assertEqual(len(mixed[0][0]), 0)
            self.assertEqual(mixed[1][1], (2 if big_endian else 2 * 256))
            base = 1 + 256 + 256 * 256
            self.assertEqual(len(mixed[1][0]), 1)
            self.assertEqual(mixed[1][0][0], base if big_endian else 256 * base)

            self.assertListEqual(
684
                data["minus_ones"], [-1, 255, -1, 65535, -1, 4294967295]
facebook-github-bot's avatar
facebook-github-bot committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
            )

    def test_bad_ply_syntax(self):
        """Some syntactically bad ply files."""
        lines = [
            "ply",
            "format ascii 1.0",
            "comment dashfadskfj;k",
            "element vertex 1",
            "property float x",
            "element listy 1",
            "property list uint int x",
            "end_header",
            "0",
            "0",
        ]
        lines2 = lines.copy()
        # this is ok
        _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[0] = "PLY"
        with self.assertRaisesRegex(ValueError, "Invalid file header."):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[2] = "#this is a comment"
        with self.assertRaisesRegex(ValueError, "Invalid line.*"):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[3] = lines[4]
        lines2[4] = lines[3]
        with self.assertRaisesRegex(
            ValueError, "Encountered property before any element."
        ):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[8] = "1 2"
725
        with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
facebook-github-bot's avatar
facebook-github-bot committed
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines[:-1]
        with self.assertRaisesRegex(ValueError, "Not enough data for listy."):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[5] = "element listy 2"
        with self.assertRaisesRegex(ValueError, "Not enough data for listy."):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2.insert(4, "property short x")
        with self.assertRaisesRegex(
            ValueError, "Cannot have two properties called x in vertex."
        ):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2.insert(4, "property zz short")
        with self.assertRaisesRegex(ValueError, "Invalid datatype: zz"):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2.append("3")
        with self.assertRaisesRegex(ValueError, "Extra data at end of file."):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2.append("comment foo")
        with self.assertRaisesRegex(ValueError, "Extra data at end of file."):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2.insert(4, "element bad 1")
761
        with self.assertRaisesRegex(ValueError, "Found an element with no properties."):
facebook-github-bot's avatar
facebook-github-bot committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[-1] = "3 2 3 3"
        _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[-1] = "3 1 2 3 4"
        msg = "A line of listy data did not have the specified length."
        with self.assertRaisesRegex(ValueError, msg):
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2 = lines.copy()
        lines2[3] = "element vertex one"
        msg = "Number of items for vertex was not a number."
        with self.assertRaisesRegex(ValueError, msg):
            _load_ply_raw(StringIO("\n".join(lines2)))

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
780
        # Heterogeneous cases
facebook-github-bot's avatar
facebook-github-bot committed
781
782
783
        lines2 = lines.copy()
        lines2.insert(4, "property double y")

784
        with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
facebook-github-bot's avatar
facebook-github-bot committed
785
786
787
788
789
790
            _load_ply_raw(StringIO("\n".join(lines2)))

        lines2[-2] = "3.3 4.2"
        _load_ply_raw(StringIO("\n".join(lines2)))

        lines2[-2] = "3.3 4.3 2"
791
        with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
facebook-github-bot's avatar
facebook-github-bot committed
792
793
            _load_ply_raw(StringIO("\n".join(lines2)))

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
794
        with self.assertRaisesRegex(ValueError, "Invalid vertices in file."):
facebook-github-bot's avatar
facebook-github-bot committed
795
796
797
798
799
800
801
802
803
804
            load_ply(StringIO("\n".join(lines)))

        lines2 = lines.copy()
        lines2[5] = "element face 1"
        with self.assertRaisesRegex(ValueError, "Invalid vertices in file."):
            load_ply(StringIO("\n".join(lines2)))

        lines2.insert(5, "property float z")
        lines2.insert(5, "property float y")
        lines2[-2] = "0 0 0"
805
806
807
808
809
        lines2[-1] = ""
        with self.assertRaisesRegex(ValueError, "Not enough data for face."):
            load_ply(StringIO("\n".join(lines2)))

        lines2[-1] = "2 0 0"
810
        with self.assertRaisesRegex(ValueError, "Faces must have at least 3 vertices."):
facebook-github-bot's avatar
facebook-github-bot committed
811
812
813
814
815
816
817
            load_ply(StringIO("\n".join(lines2)))

        # Good one
        lines2[-1] = "3 0 0 0"
        load_ply(StringIO("\n".join(lines2)))

    @staticmethod
818
    def _bm_save_ply(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
819
820
821
822
823
824
825
        return lambda: save_ply(
            BytesIO(),
            verts=verts,
            faces=faces,
            ascii=True,
            decimal_places=decimal_places,
        )
facebook-github-bot's avatar
facebook-github-bot committed
826

827
    @staticmethod
828
    def _bm_load_ply(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
829
830
        f = BytesIO()
        save_ply(f, verts=verts, faces=faces, ascii=True, decimal_places=decimal_places)
831
832
        s = f.getvalue()
        # Recreate stream so it's unaffected by how it was created.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
833
        return lambda: load_ply(BytesIO(s))
834
835
836
837
838
839
840

    @staticmethod
    def bm_save_simple_ply_with_init(V: int, F: int):
        verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3)
        faces = torch.tensor(F * [[0, 1, 2]]).view(-1, 3)
        return TestMeshPlyIO._bm_save_ply(verts, faces, decimal_places=2)

facebook-github-bot's avatar
facebook-github-bot committed
841
    @staticmethod
842
    def bm_load_simple_ply_with_init(V: int, F: int):
facebook-github-bot's avatar
facebook-github-bot committed
843
844
        verts = torch.tensor([[0.1, 0.2, 0.3]]).expand(V, 3)
        faces = torch.tensor([[0, 1, 2]], dtype=torch.int64).expand(F, 3)
845
846
847
848
849
850
851
852
853
854
855
856
857
        return TestMeshPlyIO._bm_load_ply(verts, faces, decimal_places=2)

    @staticmethod
    def bm_save_complex_ply(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshPlyIO._bm_save_ply(verts, faces, decimal_places=5)

    @staticmethod
    def bm_load_complex_ply(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshPlyIO._bm_load_ply(verts, faces, decimal_places=5)