bm_blending.py 1.87 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
Nikhila Ravi's avatar
Nikhila Ravi committed
6
7
8
9


from itertools import product

10
from fvcore.common.benchmark import benchmark
Nikhila Ravi's avatar
Nikhila Ravi committed
11
12
13
14
from test_blending import TestBlending


def bm_blending() -> None:
15
    devices = ["cuda"]
Nikhila Ravi's avatar
Nikhila Ravi committed
16
    kwargs_list = []
17
18
    num_meshes = [8]
    image_size = [64, 128, 256]
19
    faces_per_pixel = [2, 50, 100]
20
21
    backend = ["pytorch", "custom"]
    test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend)
Nikhila Ravi's avatar
Nikhila Ravi committed
22
23

    for case in test_cases:
24
        n, s, k, d, b = case
Nikhila Ravi's avatar
Nikhila Ravi committed
25
        kwargs_list.append(
26
27
28
29
30
31
32
            {
                "num_meshes": n,
                "image_size": s,
                "faces_per_pixel": k,
                "device": d,
                "backend": b,
            }
Nikhila Ravi's avatar
Nikhila Ravi committed
33
34
35
36
37
38
39
40
41
        )

    benchmark(
        TestBlending.bm_sigmoid_alpha_blending,
        "SIGMOID_ALPHA_BLENDING_PYTORCH",
        kwargs_list,
        warmup_iters=1,
    )

42
    kwargs_list = [case for case in kwargs_list if case["backend"] == "pytorch"]
Nikhila Ravi's avatar
Nikhila Ravi committed
43
44
45
46
47
48
    benchmark(
        TestBlending.bm_softmax_blending,
        "SOFTMAX_BLENDING_PYTORCH",
        kwargs_list,
        warmup_iters=1,
    )
Christoph Lassner's avatar
Christoph Lassner committed
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    kwargs_list = []
    faces_per_pixel = [2, 10]
    backend = ["pytorch"]
    test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend)
    for case in test_cases:
        n, s, k, d, b = case
        kwargs_list.append(
            {
                "num_meshes": n,
                "image_size": s,
                "faces_per_pixel": k,
                "device": d,
                "backend": b,
            }
        )
    benchmark(
        TestBlending.bm_splatter_blending,
        "SPLATTER_BLENDING_PYTORCH",
        kwargs_list,
        warmup_iters=1,
    )

Christoph Lassner's avatar
Christoph Lassner committed
72
73
74

if __name__ == "__main__":
    bm_blending()