frame_data.py 29.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
from abc import ABC, abstractmethod
from collections import defaultdict
from dataclasses import dataclass, field, fields
from typing import (
    Any,
    ClassVar,
    Generic,
    List,
    Mapping,
    Optional,
    Tuple,
    Type,
    TypeVar,
    Union,
)

import numpy as np
import torch

from pytorch3d.implicitron.dataset import types
from pytorch3d.implicitron.dataset.utils import (
    adjust_camera_to_bbox_crop_,
    adjust_camera_to_image_scale_,
    bbox_xyxy_to_xywh,
    clamp_box_to_image_bounds_and_round,
    crop_around_box,
    GenericWorkaround,
    get_bbox_from_mask,
    get_clamp_bbox,
    load_depth,
    load_depth_mask,
    load_image,
    load_mask,
    load_pointcloud,
    rescale_bbox,
    resize_image,
    safe_as_tensor,
)
from pytorch3d.implicitron.tools.config import registry, ReplaceableBase
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
from pytorch3d.renderer.cameras import CamerasBase, PerspectiveCameras
from pytorch3d.structures.pointclouds import join_pointclouds_as_batch, Pointclouds


@dataclass
class FrameData(Mapping[str, Any]):
    """
    A type of the elements returned by indexing the dataset object.
    It can represent both individual frames and batches of thereof;
    in this documentation, the sizes of tensors refer to single frames;
    add the first batch dimension for the collation result.

    Args:
        frame_number: The number of the frame within its sequence.
            0-based continuous integers.
        sequence_name: The unique name of the frame's sequence.
        sequence_category: The object category of the sequence.
        frame_timestamp: The time elapsed since the start of a sequence in sec.
        image_size_hw: The size of the original image in pixels; (height, width)
            tensor of shape (2,). Note that it is optional, e.g. it can be `None`
            if the frame annotation has no size ans image_rgb has not [yet] been
            loaded. Image-less FrameData is valid but mutators like crop/resize
            may fail if the original image size cannot be deduced.
        effective_image_size_hw: The size of the image after mutations such as
            crop/resize in pixels; (height, width). if the image has not been mutated,
            it is equal to `image_size_hw`. Note that it is also optional, for the
            same reason as `image_size_hw`.
        image_path: The qualified path to the loaded image (with dataset_root).
        image_rgb: A Tensor of shape `(3, H, W)` holding the RGB image
            of the frame; elements are floats in [0, 1].
        mask_crop: A binary mask of shape `(1, H, W)` denoting the valid image
            regions. Regions can be invalid (mask_crop[i,j]=0) in case they
            are a result of zero-padding of the image after cropping around
            the object bounding box; elements are floats in {0.0, 1.0}.
        depth_path: The qualified path to the frame's depth map.
        depth_map: A float Tensor of shape `(1, H, W)` holding the depth map
            of the frame; values correspond to distances from the camera;
            use `depth_mask` and `mask_crop` to filter for valid pixels.
        depth_mask: A binary mask of shape `(1, H, W)` denoting pixels of the
            depth map that are valid for evaluation, they have been checked for
            consistency across views; elements are floats in {0.0, 1.0}.
        mask_path: A qualified path to the foreground probability mask.
        fg_probability: A Tensor of `(1, H, W)` denoting the probability of the
            pixels belonging to the captured object; elements are floats
            in [0, 1].
        bbox_xywh: The bounding box tightly enclosing the foreground object in the
            format (x0, y0, width, height). The convention assumes that
            `x0+width` and `y0+height` includes the boundary of the box.
            I.e., to slice out the corresponding crop from an image tensor `I`
            we execute `crop = I[..., y0:y0+height, x0:x0+width]`
        crop_bbox_xywh: The bounding box denoting the boundaries of `image_rgb`
            in the original image coordinates in the format (x0, y0, width, height).
            The convention is the same as for `bbox_xywh`. `crop_bbox_xywh` differs
            from `bbox_xywh` due to padding (which can happen e.g. due to
            setting `JsonIndexDataset.box_crop_context > 0`)
        camera: A PyTorch3D camera object corresponding the frame's viewpoint,
            corrected for cropping if it happened.
        camera_quality_score: The score proportional to the confidence of the
            frame's camera estimation (the higher the more accurate).
        point_cloud_quality_score: The score proportional to the accuracy of the
            frame's sequence point cloud (the higher the more accurate).
        sequence_point_cloud_path: The path to the sequence's point cloud.
        sequence_point_cloud: A PyTorch3D Pointclouds object holding the
            point cloud corresponding to the frame's sequence. When the object
            represents a batch of frames, point clouds may be deduplicated;
            see `sequence_point_cloud_idx`.
        sequence_point_cloud_idx: Integer indices mapping frame indices to the
            corresponding point clouds in `sequence_point_cloud`; to get the
            corresponding point cloud to `image_rgb[i]`, use
            `sequence_point_cloud[sequence_point_cloud_idx[i]]`.
        frame_type: The type of the loaded frame specified in
            `subset_lists_file`, if provided.
        meta: A dict for storing additional frame information.
    """

    frame_number: Optional[torch.LongTensor]
    sequence_name: Union[str, List[str]]
    sequence_category: Union[str, List[str]]
    frame_timestamp: Optional[torch.Tensor] = None
    image_size_hw: Optional[torch.LongTensor] = None
    effective_image_size_hw: Optional[torch.LongTensor] = None
    image_path: Union[str, List[str], None] = None
    image_rgb: Optional[torch.Tensor] = None
    # masks out padding added due to cropping the square bit
    mask_crop: Optional[torch.Tensor] = None
    depth_path: Union[str, List[str], None] = None
    depth_map: Optional[torch.Tensor] = None
    depth_mask: Optional[torch.Tensor] = None
    mask_path: Union[str, List[str], None] = None
    fg_probability: Optional[torch.Tensor] = None
    bbox_xywh: Optional[torch.Tensor] = None
    crop_bbox_xywh: Optional[torch.Tensor] = None
    camera: Optional[PerspectiveCameras] = None
    camera_quality_score: Optional[torch.Tensor] = None
    point_cloud_quality_score: Optional[torch.Tensor] = None
    sequence_point_cloud_path: Union[str, List[str], None] = None
    sequence_point_cloud: Optional[Pointclouds] = None
    sequence_point_cloud_idx: Optional[torch.Tensor] = None
    frame_type: Union[str, List[str], None] = None  # known | unseen
    meta: dict = field(default_factory=lambda: {})

    # NOTE that batching resets this attribute
    _uncropped: bool = field(init=False, default=True)

    def to(self, *args, **kwargs):
        new_params = {}
        for field_name in iter(self):
            value = getattr(self, field_name)
            if isinstance(value, (torch.Tensor, Pointclouds, CamerasBase)):
                new_params[field_name] = value.to(*args, **kwargs)
            else:
                new_params[field_name] = value
        frame_data = type(self)(**new_params)
        frame_data._uncropped = self._uncropped
        return frame_data

    def cpu(self):
        return self.to(device=torch.device("cpu"))

    def cuda(self):
        return self.to(device=torch.device("cuda"))

    # the following functions make sure **frame_data can be passed to functions
    def __iter__(self):
        for f in fields(self):
            if f.name.startswith("_"):
                continue

            yield f.name

    def __getitem__(self, key):
        return getattr(self, key)

    def __len__(self):
        return sum(1 for f in iter(self))

    def crop_by_metadata_bbox_(
        self,
        box_crop_context: float,
    ) -> None:
        """Crops the frame data in-place by (possibly expanded) bounding box.
        The bounding box is taken from the object state (usually taken from
        the frame annotation or estimated from the foregroubnd mask).
        If the expanded bounding box does not fit the image, it is clamped,
        i.e. the image is *not* padded.

        Args:
            box_crop_context: rate of expansion for bbox; 0 means no expansion,

        Raises:
            ValueError: If the object does not contain a bounding box (usually when no
                mask annotation is provided)
            ValueError: If the frame data have been cropped or resized, thus the intrinsic
                bounding box is not valid for the current image size.
            ValueError: If the frame does not have an image size (usually a corner case
                when no image has been loaded)
        """
        if self.bbox_xywh is None:
            raise ValueError("Attempted cropping by metadata with empty bounding box")

        if not self._uncropped:
            raise ValueError(
                "Trying to apply the metadata bounding box to already cropped "
                "or resized image; coordinates have changed."
            )

        self._crop_by_bbox_(
            box_crop_context,
            self.bbox_xywh,
        )

    def crop_by_given_bbox_(
        self,
        box_crop_context: float,
        bbox_xywh: torch.Tensor,
    ) -> None:
        """Crops the frame data in-place by (possibly expanded) bounding box.
        If the expanded bounding box does not fit the image, it is clamped,
        i.e. the image is *not* padded.

        Args:
            box_crop_context: rate of expansion for bbox; 0 means no expansion,
            bbox_xywh: bounding box in [x0, y0, width, height] format. If float
                tensor, values are floored (after converting to [x0, y0, x1, y1]).

        Raises:
            ValueError: If the frame does not have an image size (usually a corner case
                when no image has been loaded)
        """
        self._crop_by_bbox_(
            box_crop_context,
            bbox_xywh,
        )

    def _crop_by_bbox_(
        self,
        box_crop_context: float,
        bbox_xywh: torch.Tensor,
    ) -> None:
        """Crops the frame data in-place by (possibly expanded) bounding box.
        If the expanded bounding box does not fit the image, it is clamped,
        i.e. the image is *not* padded.

        Args:
            box_crop_context: rate of expansion for bbox; 0 means no expansion,
            bbox_xywh: bounding box in [x0, y0, width, height] format. If float
                tensor, values are floored (after converting to [x0, y0, x1, y1]).

        Raises:
            ValueError: If the frame does not have an image size (usually a corner case
                when no image has been loaded)
        """
        effective_image_size_hw = self.effective_image_size_hw
        if effective_image_size_hw is None:
            raise ValueError("Calling crop on image-less FrameData")

        bbox_xyxy = get_clamp_bbox(
            bbox_xywh,
            image_path=self.image_path,  # pyre-ignore
            box_crop_context=box_crop_context,
        )
        clamp_bbox_xyxy = clamp_box_to_image_bounds_and_round(
            bbox_xyxy,
            image_size_hw=tuple(self.effective_image_size_hw),  # pyre-ignore
        )
        crop_bbox_xywh = bbox_xyxy_to_xywh(clamp_bbox_xyxy)

        if self.fg_probability is not None:
            self.fg_probability = crop_around_box(
                self.fg_probability,
                clamp_bbox_xyxy,
                self.mask_path,  # pyre-ignore
            )
        if self.image_rgb is not None:
            self.image_rgb = crop_around_box(
                self.image_rgb,
                clamp_bbox_xyxy,
                self.image_path,  # pyre-ignore
            )

        depth_map = self.depth_map
        if depth_map is not None:
            clamp_bbox_xyxy_depth = rescale_bbox(
                clamp_bbox_xyxy, tuple(depth_map.shape[-2:]), effective_image_size_hw
            ).long()
            self.depth_map = crop_around_box(
                depth_map,
                clamp_bbox_xyxy_depth,
                self.depth_path,  # pyre-ignore
            )

        depth_mask = self.depth_mask
        if depth_mask is not None:
            clamp_bbox_xyxy_depth = rescale_bbox(
                clamp_bbox_xyxy, tuple(depth_mask.shape[-2:]), effective_image_size_hw
            ).long()
            self.depth_mask = crop_around_box(
                depth_mask,
                clamp_bbox_xyxy_depth,
                self.mask_path,  # pyre-ignore
            )

        # changing principal_point according to bbox_crop
        if self.camera is not None:
            adjust_camera_to_bbox_crop_(
                camera=self.camera,
                image_size_wh=effective_image_size_hw.flip(dims=[-1]),
                clamp_bbox_xywh=crop_bbox_xywh,
            )

        # pyre-ignore
        self.effective_image_size_hw = crop_bbox_xywh[..., 2:].flip(dims=[-1])
        self._uncropped = False

    def resize_frame_(self, new_size_hw: torch.LongTensor) -> None:
        """Resizes frame data in-place according to given dimensions.

        Args:
            new_size_hw: target image size [height, width], a LongTensor of shape (2,)

        Raises:
            ValueError: If the frame does not have an image size (usually a corner case
                when no image has been loaded)
        """

        effective_image_size_hw = self.effective_image_size_hw
        if effective_image_size_hw is None:
            raise ValueError("Calling resize on image-less FrameData")

        image_height, image_width = new_size_hw.tolist()

        if self.fg_probability is not None:
            self.fg_probability, _, _ = resize_image(
                self.fg_probability,
                image_height=image_height,
                image_width=image_width,
                mode="nearest",
            )

        if self.image_rgb is not None:
            self.image_rgb, _, self.mask_crop = resize_image(
                self.image_rgb, image_height=image_height, image_width=image_width
            )

        if self.depth_map is not None:
            self.depth_map, _, _ = resize_image(
                self.depth_map,
                image_height=image_height,
                image_width=image_width,
                mode="nearest",
            )

        if self.depth_mask is not None:
            self.depth_mask, _, _ = resize_image(
                self.depth_mask,
                image_height=image_height,
                image_width=image_width,
                mode="nearest",
            )

        if self.camera is not None:
            if self.image_size_hw is None:
                raise ValueError(
                    "image_size_hw has to be defined for resizing FrameData with cameras."
                )
            adjust_camera_to_image_scale_(
                camera=self.camera,
                original_size_wh=effective_image_size_hw.flip(dims=[-1]),
                new_size_wh=new_size_hw.flip(dims=[-1]),  # pyre-ignore
            )

        self.effective_image_size_hw = new_size_hw
        self._uncropped = False

    @classmethod
    def collate(cls, batch):
        """
        Given a list objects `batch` of class `cls`, collates them into a batched
        representation suitable for processing with deep networks.
        """

        elem = batch[0]

        if isinstance(elem, cls):
            pointcloud_ids = [id(el.sequence_point_cloud) for el in batch]
            id_to_idx = defaultdict(list)
            for i, pc_id in enumerate(pointcloud_ids):
                id_to_idx[pc_id].append(i)

            sequence_point_cloud = []
            sequence_point_cloud_idx = -np.ones((len(batch),))
            for i, ind in enumerate(id_to_idx.values()):
                sequence_point_cloud_idx[ind] = i
                sequence_point_cloud.append(batch[ind[0]].sequence_point_cloud)
            assert (sequence_point_cloud_idx >= 0).all()

            override_fields = {
                "sequence_point_cloud": sequence_point_cloud,
                "sequence_point_cloud_idx": sequence_point_cloud_idx.tolist(),
            }
            # note that the pre-collate value of sequence_point_cloud_idx is unused

            collated = {}
            for f in fields(elem):
                if not f.init:
                    continue

                list_values = override_fields.get(
                    f.name, [getattr(d, f.name) for d in batch]
                )
                collated[f.name] = (
                    cls.collate(list_values)
                    if all(list_value is not None for list_value in list_values)
                    else None
                )
            return cls(**collated)

        elif isinstance(elem, Pointclouds):
            return join_pointclouds_as_batch(batch)

        elif isinstance(elem, CamerasBase):
            # TODO: don't store K; enforce working in NDC space
            return join_cameras_as_batch(batch)
        else:
            return torch.utils.data._utils.collate.default_collate(batch)


FrameDataSubtype = TypeVar("FrameDataSubtype", bound=FrameData)


class FrameDataBuilderBase(ReplaceableBase, Generic[FrameDataSubtype], ABC):
    """A base class for FrameDataBuilders that build a FrameData object, load and
    process the binary data (crop and resize). Implementations should parametrize
    the class with a subtype of FrameData and set frame_data_type class variable to
    that type. They have to also implement `build` method.
    """

    # To be initialised to FrameDataSubtype
    frame_data_type: ClassVar[Type[FrameDataSubtype]]

    @abstractmethod
    def build(
        self,
        frame_annotation: types.FrameAnnotation,
        sequence_annotation: types.SequenceAnnotation,
    ) -> FrameDataSubtype:
        """An abstract method to build the frame data based on raw frame/sequence
        annotations, load the binary data and adjust them according to the metadata.
        """
        raise NotImplementedError()


class GenericFrameDataBuilder(FrameDataBuilderBase[FrameDataSubtype], ABC):
    """
    A class to build a FrameData object, load and process the binary data (crop and
    resize). This is an abstract class for extending to build FrameData subtypes. Most
    users need to use concrete `FrameDataBuilder` class instead.
    Beware that modifications of frame data are done in-place.

    Args:
        dataset_root: The root folder of the dataset; all the paths in jsons are
                specified relative to this root (but not json paths themselves).
        load_images: Enable loading the frame RGB data.
        load_depths: Enable loading the frame depth maps.
        load_depth_masks: Enable loading the frame depth map masks denoting the
            depth values used for evaluation (the points consistent across views).
        load_masks: Enable loading frame foreground masks.
        load_point_clouds: Enable loading sequence-level point clouds.
        max_points: Cap on the number of loaded points in the point cloud;
            if reached, they are randomly sampled without replacement.
        mask_images: Whether to mask the images with the loaded foreground masks;
            0 value is used for background.
        mask_depths: Whether to mask the depth maps with the loaded foreground
            masks; 0 value is used for background.
        image_height: The height of the returned images, masks, and depth maps;
            aspect ratio is preserved during cropping/resizing.
        image_width: The width of the returned images, masks, and depth maps;
            aspect ratio is preserved during cropping/resizing.
        box_crop: Enable cropping of the image around the bounding box inferred
            from the foreground region of the loaded segmentation mask; masks
            and depth maps are cropped accordingly; cameras are corrected.
        box_crop_mask_thr: The threshold used to separate pixels into foreground
            and background based on the foreground_probability mask; if no value
            is greater than this threshold, the loader lowers it and repeats.
        box_crop_context: The amount of additional padding added to each
            dimension of the cropping bounding box, relative to box size.
        path_manager: Optionally a PathManager for interpreting paths in a special way.
    """

    dataset_root: str = ""
    load_images: bool = True
    load_depths: bool = True
    load_depth_masks: bool = True
    load_masks: bool = True
    load_point_clouds: bool = False
    max_points: int = 0
    mask_images: bool = False
    mask_depths: bool = False
    image_height: Optional[int] = 800
    image_width: Optional[int] = 800
    box_crop: bool = True
    box_crop_mask_thr: float = 0.4
    box_crop_context: float = 0.3
    path_manager: Any = None

    def build(
        self,
        frame_annotation: types.FrameAnnotation,
        sequence_annotation: types.SequenceAnnotation,
        load_blobs: bool = True,
    ) -> FrameDataSubtype:
        """Builds the frame data based on raw frame/sequence annotations, loads the
        binary data and adjust them according to the metadata. The processing includes:
            * if box_crop is set, the image/mask/depth are cropped with the bounding
                box provided or estimated from MaskAnnotation,
            * if image_height/image_width are set, the image/mask/depth are resized to
                fit that resolution. Note that the aspect ratio is preserved, and the
                (possibly cropped) image is pasted into the top-left corner. In the
                resulting frame_data, mask_crop field corresponds to the mask of the
                pasted image.

        Args:
            frame_annotation: frame annotation
            sequence_annotation: sequence annotation
            load_blobs: if the function should attempt loading the image, depth map
                and mask, and foreground mask

        Returns:
            The constructed FrameData object.
        """

        point_cloud = sequence_annotation.point_cloud

        frame_data = self.frame_data_type(
            frame_number=safe_as_tensor(frame_annotation.frame_number, torch.long),
            frame_timestamp=safe_as_tensor(
                frame_annotation.frame_timestamp, torch.float
            ),
            sequence_name=frame_annotation.sequence_name,
            sequence_category=sequence_annotation.category,
            camera_quality_score=safe_as_tensor(
                sequence_annotation.viewpoint_quality_score, torch.float
            ),
            point_cloud_quality_score=safe_as_tensor(
                point_cloud.quality_score, torch.float
            )
            if point_cloud is not None
            else None,
        )

558
559
560
561
562
563
564
565
566
567
568
569
570
        mask_annotation = frame_annotation.mask
        if mask_annotation is not None:
            fg_mask_np: Optional[np.ndarray] = None
            if load_blobs and self.load_masks:
                fg_mask_np, mask_path = self._load_fg_probability(frame_annotation)
                frame_data.mask_path = mask_path
                frame_data.fg_probability = safe_as_tensor(fg_mask_np, torch.float)

            bbox_xywh = mask_annotation.bounding_box_xywh
            if bbox_xywh is None and fg_mask_np is not None:
                bbox_xywh = get_bbox_from_mask(fg_mask_np, self.box_crop_mask_thr)

            frame_data.bbox_xywh = safe_as_tensor(bbox_xywh, torch.long)
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

        if frame_annotation.image is not None:
            image_size_hw = safe_as_tensor(frame_annotation.image.size, torch.long)
            frame_data.image_size_hw = image_size_hw  # original image size
            # image size after crop/resize
            frame_data.effective_image_size_hw = image_size_hw

            if load_blobs and self.load_images:
                (
                    frame_data.image_rgb,
                    frame_data.image_path,
                ) = self._load_images(frame_annotation, frame_data.fg_probability)

        if load_blobs and self.load_depths and frame_annotation.depth is not None:
            (
                frame_data.depth_map,
                frame_data.depth_path,
                frame_data.depth_mask,
            ) = self._load_mask_depth(frame_annotation, frame_data.fg_probability)

        if load_blobs and self.load_point_clouds and point_cloud is not None:
            pcl_path = self._fix_point_cloud_path(point_cloud.path)
            frame_data.sequence_point_cloud = load_pointcloud(
                self._local_path(pcl_path), max_points=self.max_points
            )
            frame_data.sequence_point_cloud_path = pcl_path

        if frame_annotation.viewpoint is not None:
            frame_data.camera = self._get_pytorch3d_camera(frame_annotation)

        if self.box_crop:
            frame_data.crop_by_metadata_bbox_(self.box_crop_context)

        if self.image_height is not None and self.image_width is not None:
            new_size = (self.image_height, self.image_width)
            frame_data.resize_frame_(
                new_size_hw=torch.tensor(new_size, dtype=torch.long),  # pyre-ignore
            )

        return frame_data

    def _load_fg_probability(
        self, entry: types.FrameAnnotation
614
    ) -> Tuple[np.ndarray, str]:
615
616
617
618
619
620
        full_path = os.path.join(self.dataset_root, entry.mask.path)  # pyre-ignore
        fg_probability = load_mask(self._local_path(full_path))
        if fg_probability.shape[-2:] != entry.image.size:
            raise ValueError(
                f"bad mask size: {fg_probability.shape[-2:]} vs {entry.image.size}!"
            )
621
622

        return fg_probability, full_path
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

    def _load_images(
        self,
        entry: types.FrameAnnotation,
        fg_probability: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, str]:
        assert self.dataset_root is not None and entry.image is not None
        path = os.path.join(self.dataset_root, entry.image.path)
        image_rgb = load_image(self._local_path(path))

        if image_rgb.shape[-2:] != entry.image.size:
            raise ValueError(
                f"bad image size: {image_rgb.shape[-2:]} vs {entry.image.size}!"
            )

        if self.mask_images:
            assert fg_probability is not None
            image_rgb *= fg_probability

        return image_rgb, path

    def _load_mask_depth(
        self,
        entry: types.FrameAnnotation,
        fg_probability: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, str, torch.Tensor]:
        entry_depth = entry.depth
        assert entry_depth is not None
        path = os.path.join(self.dataset_root, entry_depth.path)
        depth_map = load_depth(self._local_path(path), entry_depth.scale_adjustment)

        if self.mask_depths:
            assert fg_probability is not None
            depth_map *= fg_probability

        if self.load_depth_masks:
            assert entry_depth.mask_path is not None
            mask_path = os.path.join(self.dataset_root, entry_depth.mask_path)
            depth_mask = load_depth_mask(self._local_path(mask_path))
        else:
            depth_mask = torch.ones_like(depth_map)

        return torch.tensor(depth_map), path, torch.tensor(depth_mask)

    def _get_pytorch3d_camera(
        self,
        entry: types.FrameAnnotation,
    ) -> PerspectiveCameras:
        entry_viewpoint = entry.viewpoint
        assert entry_viewpoint is not None
        # principal point and focal length
        principal_point = torch.tensor(
            entry_viewpoint.principal_point, dtype=torch.float
        )
        focal_length = torch.tensor(entry_viewpoint.focal_length, dtype=torch.float)

        format = entry_viewpoint.intrinsics_format
        if entry_viewpoint.intrinsics_format == "ndc_norm_image_bounds":
            # legacy PyTorch3D NDC format
            # convert to pixels unequally and convert to ndc equally
            image_size_as_list = list(reversed(entry.image.size))
            image_size_wh = torch.tensor(image_size_as_list, dtype=torch.float)
            per_axis_scale = image_size_wh / image_size_wh.min()
            focal_length = focal_length * per_axis_scale
            principal_point = principal_point * per_axis_scale
        elif entry_viewpoint.intrinsics_format != "ndc_isotropic":
            raise ValueError(f"Unknown intrinsics format: {format}")

        return PerspectiveCameras(
            focal_length=focal_length[None],
            principal_point=principal_point[None],
            R=torch.tensor(entry_viewpoint.R, dtype=torch.float)[None],
            T=torch.tensor(entry_viewpoint.T, dtype=torch.float)[None],
        )

    def _fix_point_cloud_path(self, path: str) -> str:
        """
        Fix up a point cloud path from the dataset.
        Some files in Co3Dv2 have an accidental absolute path stored.
        """
        unwanted_prefix = (
            "/large_experiments/p3/replay/datasets/co3d/co3d45k_220512/export_v23/"
        )
        if path.startswith(unwanted_prefix):
            path = path[len(unwanted_prefix) :]
        return os.path.join(self.dataset_root, path)

    def _local_path(self, path: str) -> str:
        if self.path_manager is None:
            return path
        return self.path_manager.get_local_path(path)


@registry.register
class FrameDataBuilder(GenericWorkaround, GenericFrameDataBuilder[FrameData]):
    """
    A concrete class to build a FrameData object, load and process the binary data (crop
    and resize). Beware that modifications of frame data are done in-place. Please see
    the documentation for `GenericFrameDataBuilder` for the description of parameters
    and methods.
    """

    frame_data_type: ClassVar[Type[FrameData]] = FrameData