test_point_mesh_distance.py 32.6 KB
Newer Older
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import numpy as np
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
7
from common_testing import TestCaseMixin, get_random_cuda_device
Georgia Gkioxari's avatar
Georgia Gkioxari committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from pytorch3d import _C
from pytorch3d.loss import point_mesh_edge_distance, point_mesh_face_distance
from pytorch3d.structures import Meshes, Pointclouds, packed_to_list


class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def eps():
        return 1e-8

    @staticmethod
    def init_meshes_clouds(
        batch_size: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        num_points: int = 3000,
        device: str = "cuda:0",
    ):
        device = torch.device(device)
        nump = torch.randint(low=1, high=num_points, size=(batch_size,))
        numv = torch.randint(low=3, high=num_verts, size=(batch_size,))
        numf = torch.randint(low=1, high=num_faces, size=(batch_size,))
        verts_list = []
        faces_list = []
        points_list = []
        for i in range(batch_size):
            # Randomly choose vertices
            verts = torch.rand((numv[i], 3), dtype=torch.float32, device=device)
            verts.requires_grad_(True)

            # Randomly choose faces. Our tests below compare argmin indices
            # over faces and edges. Argmin is sensitive even to small numeral variations
            # thus we make sure that faces are valid
            # i.e. a face f = (i0, i1, i2) s.t. i0 != i1 != i2,
            # otherwise argmin due to numeral sensitivities cannot be resolved
            faces, allf = [], 0
            validf = numv[i].item() - numv[i].item() % 3
            while allf < numf[i]:
                ff = torch.randperm(numv[i], device=device)[:validf].view(-1, 3)
                faces.append(ff)
                allf += ff.shape[0]
            faces = torch.cat(faces, 0)
            if faces.shape[0] > numf[i]:
                faces = faces[: numf[i]]

            verts_list.append(verts)
            faces_list.append(faces)

            # Randomly choose points
            points = torch.rand((nump[i], 3), dtype=torch.float32, device=device)
            points.requires_grad_(True)

            points_list.append(points)

        meshes = Meshes(verts_list, faces_list)
        pcls = Pointclouds(points_list)

        return meshes, pcls

    @staticmethod
    def _point_to_bary(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
        """
        Computes the barycentric coordinates of point wrt triangle (tri)
        Note that point needs to live in the space spanned by tri = (a, b, c),
        i.e. by taking the projection of an arbitrary point on the space spanned by tri

        Args:
            point: FloatTensor of shape (3)
            tri: FloatTensor of shape (3, 3)
        Returns:
            bary: FloatTensor of shape (3)
        """
        assert point.dim() == 1 and point.shape[0] == 3
        assert tri.dim() == 2 and tri.shape[0] == 3 and tri.shape[1] == 3

        a, b, c = tri.unbind(0)

        v0 = b - a
        v1 = c - a
        v2 = point - a

        d00 = v0.dot(v0)
        d01 = v0.dot(v1)
        d11 = v1.dot(v1)
        d20 = v2.dot(v0)
        d21 = v2.dot(v1)

        denom = d00 * d11 - d01 * d01
        s2 = (d11 * d20 - d01 * d21) / denom
        s3 = (d00 * d21 - d01 * d20) / denom
        s1 = 1.0 - s2 - s3

        bary = torch.tensor([s1, s2, s3])
        return bary

    @staticmethod
    def _is_inside_triangle(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
        """
        Computes whether point is inside triangle tri
        Note that point needs to live in the space spanned by tri = (a, b, c)
        i.e. by taking the projection of an arbitrary point on the space spanned by tri

        Args:
            point: FloatTensor of shape (3)
            tri: FloatTensor of shape (3, 3)
        Returns:
            inside: BoolTensor of shape (1)
        """
        bary = TestPointMeshDistance._point_to_bary(point, tri)
        inside = ((bary >= 0.0) * (bary <= 1.0)).all()
        return inside

    @staticmethod
    def _point_to_edge_distance(
        point: torch.Tensor, edge: torch.Tensor
    ) -> torch.Tensor:
        """
        Computes the squared euclidean distance of points to edges
        Args:
            point: FloatTensor of shape (3)
            edge: FloatTensor of shape (2, 3)
        Returns:
            dist: FloatTensor of shape (1)
Nikhila Ravi's avatar
Nikhila Ravi committed
135

Georgia Gkioxari's avatar
Georgia Gkioxari committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        If a, b are the start and end points of the segments, we
        parametrize a point p as
            x(t) = a + t * (b - a)
        To find t which describes p we minimize (x(t) - p) ^ 2
        Note that p does not need to live in the space spanned by (a, b)
        """
        s0, s1 = edge.unbind(0)

        s01 = s1 - s0
        norm_s01 = s01.dot(s01)

        same_edge = norm_s01 < TestPointMeshDistance.eps()
        if same_edge:
            dist = 0.5 * (point - s0).dot(point - s0) + 0.5 * (point - s1).dot(
                point - s1
            )
            return dist

        t = s01.dot(point - s0) / norm_s01
        t = torch.clamp(t, min=0.0, max=1.0)
        x = s0 + t * s01
        dist = (x - point).dot(x - point)
        return dist

    @staticmethod
    def _point_to_tri_distance(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
        """
        Computes the squared euclidean distance of points to edges
        Args:
            point: FloatTensor of shape (3)
            tri: FloatTensor of shape (3, 3)
        Returns:
Nikhila Ravi's avatar
Nikhila Ravi committed
168
            dist: FloatTensor of shape (1)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        """
        a, b, c = tri.unbind(0)
        cross = torch.cross(b - a, c - a)
        norm = cross.norm()
        normal = torch.nn.functional.normalize(cross, dim=0)

        # p0 is the projection of p onto the plane spanned by (a, b, c)
        # p0 = p + tt * normal, s.t. (p0 - a) is orthogonal to normal
        # => tt = dot(a - p, n)
        tt = normal.dot(a) - normal.dot(point)
        p0 = point + tt * normal
        dist_p = tt * tt

        # Compute the distance of p to all edge segments
        e01_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 1]])
        e02_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 2]])
        e12_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[1, 2]])

        with torch.no_grad():
            inside_tri = TestPointMeshDistance._is_inside_triangle(p0, tri)

        if inside_tri and (norm > TestPointMeshDistance.eps()):
            return dist_p
        else:
            if e01_dist.le(e02_dist) and e01_dist.le(e12_dist):
                return e01_dist
            elif e02_dist.le(e01_dist) and e02_dist.le(e12_dist):
                return e02_dist
            else:
                return e12_dist

    def test_point_edge_array_distance(self):
        """
        Test CUDA implementation for PointEdgeArrayDistanceForward
            &  PointEdgeArrayDistanceBackward
        """
        P, E = 16, 32
Nikhila Ravi's avatar
Nikhila Ravi committed
206
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
207
208
209
210
211
212
213
        points = torch.rand((P, 3), dtype=torch.float32, device=device)
        edges = torch.rand((E, 2, 3), dtype=torch.float32, device=device)

        # randomly make some edge points equal
        same = torch.rand((E,), dtype=torch.float32, device=device) > 0.5
        edges[same, 1] = edges[same, 0].clone().detach()

214
215
216
        points_cpu = points.clone().cpu()
        edges_cpu = edges.clone().cpu()

Georgia Gkioxari's avatar
Georgia Gkioxari committed
217
218
219
220
221
222
223
224
225
226
227
228
229
        points.requires_grad = True
        edges.requires_grad = True
        grad_dists = torch.rand((P, E), dtype=torch.float32, device=device)

        # Naive python implementation
        dists_naive = torch.zeros((P, E), dtype=torch.float32, device=device)
        for p in range(P):
            for e in range(E):
                dist = self._point_to_edge_distance(points[p], edges[e])
                dists_naive[p, e] = dist

        # Cuda Forward Implementation
        dists_cuda = _C.point_edge_array_dist_forward(points, edges)
230
        dists_cpu = _C.point_edge_array_dist_forward(points_cpu, edges_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
231
232
233

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
234
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
235
236
237
238
239

        # CUDA Bacwkard Implementation
        grad_points_cuda, grad_edges_cuda = _C.point_edge_array_dist_backward(
            points, edges, grad_dists
        )
240
241
242
        grad_points_cpu, grad_edges_cpu = _C.point_edge_array_dist_backward(
            points_cpu, edges_cpu, grad_dists.cpu()
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
243
244

        dists_naive.backward(grad_dists)
245
246
        grad_points_naive = points.grad.cpu()
        grad_edges_naive = edges.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
247
248

        # Compare
249
250
251
252
        self.assertClose(grad_points_naive, grad_points_cuda.cpu())
        self.assertClose(grad_edges_naive, grad_edges_cuda.cpu())
        self.assertClose(grad_points_naive, grad_points_cpu)
        self.assertClose(grad_edges_naive, grad_edges_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
253
254
255
256
257
258

    def test_point_edge_distance(self):
        """
        Test CUDA implementation for PointEdgeDistanceForward
            &  PointEdgeDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
259
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
260
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
261
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()
        max_p = pcls.num_points_per_cloud().max().item()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        edges_packed = verts_packed[meshes.edges_packed()]  # (E, 2, 3)
        edges_packed = edges_packed.clone().detach()

        edges_first_idx = meshes.mesh_to_edges_packed_first_idx()

        # leaf nodes
        points_packed.requires_grad = True
        edges_packed.requires_grad = True
        grad_dists = torch.rand(
            (points_packed.shape[0],), dtype=torch.float32, device=device
        )

283
        # Cuda Implementation: forward
Georgia Gkioxari's avatar
Georgia Gkioxari committed
284
285
286
287
288
289
290
        dists_cuda, idx_cuda = _C.point_edge_dist_forward(
            points_packed, points_first_idx, edges_packed, edges_first_idx, max_p
        )
        # Cuda Implementation: backward
        grad_points_cuda, grad_edges_cuda = _C.point_edge_dist_backward(
            points_packed, edges_packed, idx_cuda, grad_dists
        )
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.point_edge_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            edges_packed.cpu(),
            edges_first_idx.cpu(),
            max_p,
        )

        # Cpu Implementation: backward
        # Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
        grad_points_cpu, grad_edges_cpu = _C.point_edge_dist_backward(
            points_packed.cpu(), edges_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu()
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

        # Naive Implementation: forward
        edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            edges = edges_list[i]
            dists_temp = torch.zeros(
                (points.shape[0], edges.shape[0]), dtype=torch.float32, device=device
            )
            for p in range(points.shape[0]):
                for e in range(edges.shape[0]):
                    dist = self._point_to_edge_distance(points[p], edges[e])
                    dists_temp[p, e] = dist
            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_edges which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = points_first_idx[i]
            end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0]

            min_idx = idx_cuda[start:end] - edges_first_idx[i]
            iidx = torch.arange(points.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
339
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
340
341
342
343

        # Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
344
        grad_edges_naive = edges_packed.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
345
346
347

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
348
349
350
        self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
351
352
353
354
355
356

    def test_edge_point_distance(self):
        """
        Test CUDA implementation for EdgePointDistanceForward
            &  EdgePointDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
357
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
358
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
359
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        edges_packed = verts_packed[meshes.edges_packed()]  # (E, 2, 3)
        edges_packed = edges_packed.clone().detach()

        edges_first_idx = meshes.mesh_to_edges_packed_first_idx()
        max_e = meshes.num_edges_per_mesh().max().item()

        # leaf nodes
        points_packed.requires_grad = True
        edges_packed.requires_grad = True
        grad_dists = torch.rand(
            (edges_packed.shape[0],), dtype=torch.float32, device=device
        )

        # Cuda Implementation: forward
        dists_cuda, idx_cuda = _C.edge_point_dist_forward(
            points_packed, points_first_idx, edges_packed, edges_first_idx, max_e
        )

        # Cuda Implementation: backward
        grad_points_cuda, grad_edges_cuda = _C.edge_point_dist_backward(
            points_packed, edges_packed, idx_cuda, grad_dists
        )

391
392
393
394
395
396
397
398
399
400
401
402
403
404
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.edge_point_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            edges_packed.cpu(),
            edges_first_idx.cpu(),
            max_e,
        )

        # Cpu Implementation: backward
        grad_points_cpu, grad_edges_cpu = _C.edge_point_dist_backward(
            points_packed.cpu(), edges_packed.cpu(), idx_cpu, grad_dists.cpu()
        )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        # Naive Implementation: forward
        edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            edges = edges_list[i]
            dists_temp = torch.zeros(
                (edges.shape[0], points.shape[0]), dtype=torch.float32, device=device
            )
            for e in range(edges.shape[0]):
                for p in range(points.shape[0]):
                    dist = self._point_to_edge_distance(points[p], edges[e])
                    dists_temp[e, p] = dist

            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_edges which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = edges_first_idx[i]
            end = edges_first_idx[i + 1] if i < N - 1 else edges_packed.shape[0]

429
            min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
430
431
432
433
434
435
436
437
438
            iidx = torch.arange(edges.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
439
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
440
441
442
443

        # Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
444
        grad_edges_naive = edges_packed.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
445
446
447

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
448
449
450
        self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
451
452
453
454
455

    def test_point_mesh_edge_distance(self):
        """
        Test point_mesh_edge_distance from pytorch3d.loss
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
456
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
457
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
458
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

        # clone and detach for another backward pass through the op
        verts_op = [verts.clone().detach() for verts in meshes.verts_list()]
        for i in range(N):
            verts_op[i].requires_grad = True

        faces_op = [faces.clone().detach() for faces in meshes.faces_list()]
        meshes_op = Meshes(verts=verts_op, faces=faces_op)
        points_op = [points.clone().detach() for points in pcls.points_list()]
        for i in range(N):
            points_op[i].requires_grad = True
        pcls_op = Pointclouds(points_op)

        # Cuda implementation: forward & backward
        loss_op = point_mesh_edge_distance(meshes_op, pcls_op)

        # Naive implementation: forward & backward
        edges_packed = meshes.edges_packed()
        edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
Nikhila Ravi's avatar
Nikhila Ravi committed
478
        loss_naive = torch.zeros(N, dtype=torch.float32, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
        for i in range(N):
            points = pcls.points_list()[i]
            verts = meshes.verts_list()[i]
            v_first_idx = meshes.mesh_to_verts_packed_first_idx()[i]
            edges = verts[edges_list[i] - v_first_idx]

            num_p = points.shape[0]
            num_e = edges.shape[0]
            dists = torch.zeros((num_p, num_e), dtype=torch.float32, device=device)
            for p in range(num_p):
                for e in range(num_e):
                    dist = self._point_to_edge_distance(points[p], edges[e])
                    dists[p, e] = dist

            min_dist_p, min_idx_p = dists.min(1)
            min_dist_e, min_idx_e = dists.min(0)

            loss_naive[i] = min_dist_p.mean() + min_dist_e.mean()
        loss_naive = loss_naive.mean()

        # NOTE that hear the comparison holds despite the discrepancy
        # due to the argmin indices returned by min(). This is because
        # we don't will compare gradients on the verts and not on the
        # edges or faces.

        # Compare forward pass
        self.assertClose(loss_op, loss_naive)

        # Compare backward pass
Nikhila Ravi's avatar
Nikhila Ravi committed
508
        rand_val = torch.rand(1).item()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device)

        loss_naive.backward(grad_dist)
        loss_op.backward(grad_dist)

        # check verts grad
        for i in range(N):
            self.assertClose(
                meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad
            )
            self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad)

    def test_point_face_array_distance(self):
        """
        Test CUDA implementation for PointFaceArrayDistanceForward
            &  PointFaceArrayDistanceBackward
        """
        P, T = 16, 32
Nikhila Ravi's avatar
Nikhila Ravi committed
527
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
528
529
        points = torch.rand((P, 3), dtype=torch.float32, device=device)
        tris = torch.rand((T, 3, 3), dtype=torch.float32, device=device)
530
531
        points_cpu = points.clone().cpu()
        tris_cpu = tris.clone().cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

        points.requires_grad = True
        tris.requires_grad = True
        grad_dists = torch.rand((P, T), dtype=torch.float32, device=device)

        points_temp = points.clone().detach()
        points_temp.requires_grad = True
        tris_temp = tris.clone().detach()
        tris_temp.requires_grad = True

        # Naive python implementation
        dists_naive = torch.zeros((P, T), dtype=torch.float32, device=device)
        for p in range(P):
            for t in range(T):
                dist = self._point_to_tri_distance(points[p], tris[t])
                dists_naive[p, t] = dist

        # Naive Backward
        dists_naive.backward(grad_dists)
551
552
        grad_points_naive = points.grad.cpu()
        grad_tris_naive = tris.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
553
554
555

        # Cuda Forward Implementation
        dists_cuda = _C.point_face_array_dist_forward(points, tris)
556
        dists_cpu = _C.point_face_array_dist_forward(points_cpu, tris_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
557
558
559

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
560
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
561
562
563
564
565

        # CUDA Backward Implementation
        grad_points_cuda, grad_tris_cuda = _C.point_face_array_dist_backward(
            points, tris, grad_dists
        )
566
567
568
        grad_points_cpu, grad_tris_cpu = _C.point_face_array_dist_backward(
            points_cpu, tris_cpu, grad_dists.cpu()
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
569
570

        # Compare
571
572
573
574
        self.assertClose(grad_points_naive, grad_points_cuda.cpu())
        self.assertClose(grad_tris_naive, grad_tris_cuda.cpu(), atol=5e-6)
        self.assertClose(grad_points_naive, grad_points_cpu)
        self.assertClose(grad_tris_naive, grad_tris_cpu, atol=5e-6)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
575
576
577
578
579
580

    def test_point_face_distance(self):
        """
        Test CUDA implementation for PointFaceDistanceForward
            &  PointFaceDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
581
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
582
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
583
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()
        max_p = pcls.num_points_per_cloud().max().item()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        faces_packed = verts_packed[meshes.faces_packed()]  # (T, 3, 3)
        faces_packed = faces_packed.clone().detach()

        faces_first_idx = meshes.mesh_to_faces_packed_first_idx()

        # leaf nodes
        points_packed.requires_grad = True
        faces_packed.requires_grad = True
        grad_dists = torch.rand(
            (points_packed.shape[0],), dtype=torch.float32, device=device
        )

        # Cuda Implementation: forward
        dists_cuda, idx_cuda = _C.point_face_dist_forward(
            points_packed, points_first_idx, faces_packed, faces_first_idx, max_p
        )

        # Cuda Implementation: backward
        grad_points_cuda, grad_faces_cuda = _C.point_face_dist_backward(
            points_packed, faces_packed, idx_cuda, grad_dists
        )

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.point_face_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            faces_packed.cpu(),
            faces_first_idx.cpu(),
            max_p,
        )

        # Cpu Implementation: backward
        # Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
        grad_points_cpu, grad_faces_cpu = _C.point_face_dist_backward(
            points_packed.cpu(), faces_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu()
        )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        # Naive Implementation: forward
        faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            tris = faces_list[i]
            dists_temp = torch.zeros(
                (points.shape[0], tris.shape[0]), dtype=torch.float32, device=device
            )
            for p in range(points.shape[0]):
                for t in range(tris.shape[0]):
                    dist = self._point_to_tri_distance(points[p], tris[t])
                    dists_temp[p, t] = dist

            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_tris which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = points_first_idx[i]
            end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0]

654
            min_idx = idx_cuda.cpu()[start:end] - faces_first_idx[i].cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
655
656
657
658
659
660
661
662
663
            iidx = torch.arange(points.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
664
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
665
666
667
668

        #  Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
669
        grad_faces_naive = faces_packed.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
670
671
672

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
673
674
675
        self.assertClose(grad_faces_naive, grad_faces_cuda.cpu(), atol=5e-7)
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_faces_naive, grad_faces_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
676
677
678
679
680
681

    def test_face_point_distance(self):
        """
        Test CUDA implementation for FacePointDistanceForward
            &  FacePointDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
682
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
683
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
684
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        faces_packed = verts_packed[meshes.faces_packed()]  # (T, 3, 3)
        faces_packed = faces_packed.clone().detach()

        faces_first_idx = meshes.mesh_to_faces_packed_first_idx()
        max_f = meshes.num_faces_per_mesh().max().item()

        # leaf nodes
        points_packed.requires_grad = True
        faces_packed.requires_grad = True
        grad_dists = torch.rand(
            (faces_packed.shape[0],), dtype=torch.float32, device=device
        )

        # Cuda Implementation: forward
        dists_cuda, idx_cuda = _C.face_point_dist_forward(
            points_packed, points_first_idx, faces_packed, faces_first_idx, max_f
        )

        # Cuda Implementation: backward
        grad_points_cuda, grad_faces_cuda = _C.face_point_dist_backward(
            points_packed, faces_packed, idx_cuda, grad_dists
        )

716
717
718
719
720
721
722
723
724
725
726
727
728
729
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.face_point_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            faces_packed.cpu(),
            faces_first_idx.cpu(),
            max_f,
        )

        # Cpu Implementation: backward
        grad_points_cpu, grad_faces_cpu = _C.face_point_dist_backward(
            points_packed.cpu(), faces_packed.cpu(), idx_cpu, grad_dists.cpu()
        )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        # Naive Implementation: forward
        faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            tris = faces_list[i]
            dists_temp = torch.zeros(
                (tris.shape[0], points.shape[0]), dtype=torch.float32, device=device
            )
            for t in range(tris.shape[0]):
                for p in range(points.shape[0]):
                    dist = self._point_to_tri_distance(points[p], tris[t])
                    dists_temp[t, p] = dist

            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_tris which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = faces_first_idx[i]
            end = faces_first_idx[i + 1] if i < N - 1 else faces_packed.shape[0]

754
            min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
755
756
757
758
759
760
761
762
763
            iidx = torch.arange(tris.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
764
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
765
766
767
768
769
770
771
772
773

        # Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
        grad_faces_naive = faces_packed.grad

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
        self.assertClose(grad_faces_naive.cpu(), grad_faces_cuda.cpu(), atol=5e-7)
774
775
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_faces_naive.cpu(), grad_faces_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
776
777
778
779
780

    def test_point_mesh_face_distance(self):
        """
        Test point_mesh_face_distance from pytorch3d.loss
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
781
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
782
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
783
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797

        # clone and detach for another backward pass through the op
        verts_op = [verts.clone().detach() for verts in meshes.verts_list()]
        for i in range(N):
            verts_op[i].requires_grad = True

        faces_op = [faces.clone().detach() for faces in meshes.faces_list()]
        meshes_op = Meshes(verts=verts_op, faces=faces_op)
        points_op = [points.clone().detach() for points in pcls.points_list()]
        for i in range(N):
            points_op[i].requires_grad = True
        pcls_op = Pointclouds(points_op)

        # naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
798
        loss_naive = torch.zeros(N, dtype=torch.float32, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
        for i in range(N):
            points = pcls.points_list()[i]
            verts = meshes.verts_list()[i]
            faces = meshes.faces_list()[i]
            tris = verts[faces]

            num_p = points.shape[0]
            num_t = tris.shape[0]
            dists = torch.zeros((num_p, num_t), dtype=torch.float32, device=device)
            for p in range(num_p):
                for t in range(num_t):
                    dist = self._point_to_tri_distance(points[p], tris[t])
                    dists[p, t] = dist

            min_dist_p, min_idx_p = dists.min(1)
            min_dist_t, min_idx_t = dists.min(0)

            loss_naive[i] = min_dist_p.mean() + min_dist_t.mean()
        loss_naive = loss_naive.mean()

        # Op
        loss_op = point_mesh_face_distance(meshes_op, pcls_op)

        # Compare forward pass
        self.assertClose(loss_op, loss_naive)

        # Compare backward pass
Nikhila Ravi's avatar
Nikhila Ravi committed
826
        rand_val = torch.rand(1).item()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device)

        loss_naive.backward(grad_dist)
        loss_op.backward(grad_dist)

        # check verts grad
        for i in range(N):
            self.assertClose(
                meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad
            )
            self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad)

    @staticmethod
    def point_mesh_edge(N: int, V: int, F: int, P: int, device: str):
        device = torch.device(device)
Nikhila Ravi's avatar
Nikhila Ravi committed
842
843
844
        meshes, pcls = TestPointMeshDistance.init_meshes_clouds(
            N, V, F, P, device=device
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
845
846
847
848
849
850
851
852
853
854
855
        torch.cuda.synchronize()

        def loss():
            point_mesh_edge_distance(meshes, pcls)
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def point_mesh_face(N: int, V: int, F: int, P: int, device: str):
        device = torch.device(device)
Nikhila Ravi's avatar
Nikhila Ravi committed
856
857
858
        meshes, pcls = TestPointMeshDistance.init_meshes_clouds(
            N, V, F, P, device=device
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
859
860
861
862
863
864
865
        torch.cuda.synchronize()

        def loss():
            point_mesh_face_distance(meshes, pcls)
            torch.cuda.synchronize()

        return loss