train_nerf.py 9.02 KB
Newer Older
David Novotny's avatar
David Novotny committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import collections
import os
import pickle
import warnings

import hydra
import numpy as np
import torch
from nerf.dataset import get_nerf_datasets, trivial_collate
from nerf.nerf_renderer import RadianceFieldRenderer, visualize_nerf_outputs
from nerf.stats import Stats
from omegaconf import DictConfig
from visdom import Visdom

David Novotny's avatar
Readme  
David Novotny committed
17

David Novotny's avatar
David Novotny committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs")


@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):

    # Set the relevant seeds for reproducibility.
    np.random.seed(cfg.seed)
    torch.manual_seed(cfg.seed)

    # Device on which to run.
    if torch.cuda.is_available():
        device = "cuda"
    else:
        warnings.warn(
            "Please note that although executing on CPU is supported,"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
34
            + "the training is unlikely to finish in reasonable time."
David Novotny's avatar
David Novotny committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        )
        device = "cpu"

    # Initialize the Radiance Field model.
    model = RadianceFieldRenderer(
        image_size=cfg.data.image_size,
        n_pts_per_ray=cfg.raysampler.n_pts_per_ray,
        n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray,
        n_rays_per_image=cfg.raysampler.n_rays_per_image,
        min_depth=cfg.raysampler.min_depth,
        max_depth=cfg.raysampler.max_depth,
        stratified=cfg.raysampler.stratified,
        stratified_test=cfg.raysampler.stratified_test,
        chunk_size_test=cfg.raysampler.chunk_size_test,
        n_harmonic_functions_xyz=cfg.implicit_function.n_harmonic_functions_xyz,
        n_harmonic_functions_dir=cfg.implicit_function.n_harmonic_functions_dir,
        n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz,
        n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir,
        n_layers_xyz=cfg.implicit_function.n_layers_xyz,
        density_noise_std=cfg.implicit_function.density_noise_std,
    )

    # Move the model to the relevant device.
    model.to(device)

    # Init stats to None before loading.
    stats = None
    optimizer_state_dict = None
    start_epoch = 0

    checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path)
    if len(cfg.checkpoint_path) > 0:
        # Make the root of the experiment directory.
        checkpoint_dir = os.path.split(checkpoint_path)[0]
        os.makedirs(checkpoint_dir, exist_ok=True)

        # Resume training if requested.
        if cfg.resume and os.path.isfile(checkpoint_path):
            print(f"Resuming from checkpoint {checkpoint_path}.")
            loaded_data = torch.load(checkpoint_path)
            model.load_state_dict(loaded_data["model"])
            stats = pickle.loads(loaded_data["stats"])
            print(f"   => resuming from epoch {stats.epoch}.")
            optimizer_state_dict = loaded_data["optimizer"]
            start_epoch = stats.epoch

    # Initialize the optimizer.
    optimizer = torch.optim.Adam(
        model.parameters(),
        lr=cfg.optimizer.lr,
    )

    # Load the optimizer state dict in case we are resuming.
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
        optimizer.last_epoch = start_epoch

    # Init the stats object.
    if stats is None:
        stats = Stats(
            ["loss", "mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it"],
        )

    # Learning rate scheduler setup.

    # Following the original code, we use exponential decay of the
    # learning rate: current_lr = base_lr * gamma ** (epoch / step_size)
    def lr_lambda(epoch):
        return cfg.optimizer.lr_scheduler_gamma ** (
            epoch / cfg.optimizer.lr_scheduler_step_size
        )

    # The learning rate scheduling is implemented with LambdaLR PyTorch scheduler.
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
        optimizer, lr_lambda, last_epoch=start_epoch - 1, verbose=False
    )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
112
    # Initialize the cache for storing variables needed for visualization.
David Novotny's avatar
David Novotny committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    visuals_cache = collections.deque(maxlen=cfg.visualization.history_size)

    # Init the visualization visdom env.
    if cfg.visualization.visdom:
        viz = Visdom(
            server=cfg.visualization.visdom_server,
            port=cfg.visualization.visdom_port,
            use_incoming_socket=False,
        )
    else:
        viz = None

    # Load the training/validation data.
    train_dataset, val_dataset, _ = get_nerf_datasets(
        dataset_name=cfg.data.dataset_name,
        image_size=cfg.data.image_size,
    )

    if cfg.data.precache_rays:
        # Precache the projection rays.
        model.eval()
        with torch.no_grad():
            for dataset in (train_dataset, val_dataset):
                cache_cameras = [e["camera"].to(device) for e in dataset]
                cache_camera_hashes = [e["camera_idx"] for e in dataset]
                model.precache_rays(cache_cameras, cache_camera_hashes)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=1,
        shuffle=True,
        num_workers=0,
        collate_fn=trivial_collate,
    )

    # The validation dataloader is just an endless stream of random samples.
    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=1,
        num_workers=0,
        collate_fn=trivial_collate,
        sampler=torch.utils.data.RandomSampler(
            val_dataset,
            replacement=True,
            num_samples=cfg.optimizer.max_epochs,
        ),
    )

    # Set the model to the training mode.
    model.train()

    # Run the main training loop.
    for epoch in range(start_epoch, cfg.optimizer.max_epochs):
        stats.new_epoch()  # Init a new epoch.
        for iteration, batch in enumerate(train_dataloader):
            image, camera, camera_idx = batch[0].values()
            image = image.to(device)
            camera = camera.to(device)

            optimizer.zero_grad()

            # Run the forward pass of the model.
            nerf_out, metrics = model(
                camera_idx if cfg.data.precache_rays else None,
                camera,
                image,
            )

            # The loss is a sum of coarse and fine MSEs
            loss = metrics["mse_coarse"] + metrics["mse_fine"]

            # Take the training step.
            loss.backward()
            optimizer.step()

            # Update stats with the current metrics.
            stats.update(
                {"loss": float(loss), **metrics},
                stat_set="train",
            )

            if iteration % cfg.stats_print_interval == 0:
                stats.print(stat_set="train")

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
197
            # Update the visualization cache.
David Novotny's avatar
David Novotny committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            visuals_cache.append(
                {
                    "camera": camera.cpu(),
                    "camera_idx": camera_idx,
                    "image": image.cpu().detach(),
                    "rgb_fine": nerf_out["rgb_fine"].cpu().detach(),
                    "rgb_coarse": nerf_out["rgb_coarse"].cpu().detach(),
                    "rgb_gt": nerf_out["rgb_gt"].cpu().detach(),
                    "coarse_ray_bundle": nerf_out["coarse_ray_bundle"],
                }
            )

        # Adjust the learning rate.
        lr_scheduler.step()

        # Validation
        if epoch % cfg.validation_epoch_interval == 0 and epoch > 0:

            # Sample a validation camera/image.
            val_batch = next(val_dataloader.__iter__())
            val_image, val_camera, camera_idx = val_batch[0].values()
            val_image = val_image.to(device)
            val_camera = val_camera.to(device)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
222
            # Activate eval mode of the model (lets us do a full rendering pass).
David Novotny's avatar
David Novotny committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            model.eval()
            with torch.no_grad():
                val_nerf_out, val_metrics = model(
                    camera_idx if cfg.data.precache_rays else None,
                    val_camera,
                    val_image,
                )

            # Update stats with the validation metrics.
            stats.update(val_metrics, stat_set="val")
            stats.print(stat_set="val")

            if viz is not None:
                # Plot that loss curves into visdom.
                stats.plot_stats(
                    viz=viz,
                    visdom_env=cfg.visualization.visdom_env,
                    plot_file=None,
                )
                # Visualize the intermediate results.
                visualize_nerf_outputs(
                    val_nerf_out, visuals_cache, viz, cfg.visualization.visdom_env
                )

            # Set the model back to train mode.
            model.train()

        # Checkpoint.
        if (
            epoch % cfg.checkpoint_epoch_interval == 0
            and len(cfg.checkpoint_path) > 0
            and epoch > 0
        ):
            print(f"Storing checkpoint {checkpoint_path}.")
            data_to_store = {
                "model": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "stats": pickle.dumps(stats),
            }
            torch.save(data_to_store, checkpoint_path)


if __name__ == "__main__":
    main()