test_blending.py 14.7 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

5
6
import numpy as np
import torch
7
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
8
9
10
11
12
13
14
15
16
from pytorch3d.renderer.blending import (
    BlendParams,
    hard_rgb_blend,
    sigmoid_alpha_blend,
    softmax_rgb_blend,
)
from pytorch3d.renderer.mesh.rasterizer import Fragments


Nikhila Ravi's avatar
Nikhila Ravi committed
17
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
facebook-github-bot's avatar
facebook-github-bot committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    """
    Naive for loop based implementation of distance based alpha calculation.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0

                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
                pixel_colors[n, h, w, 3] = 1.0 - alpha

44
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
45
46


47
def sigmoid_blend_naive_loop_backward(grad_images, images, fragments, blend_params):
Nikhila Ravi's avatar
Nikhila Ravi committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    grad_distances = torch.zeros((N, H, W, K), dtype=dists.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0 - images[n, h, w, 3]
                grad_alpha = grad_images[n, h, w, 3]
                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        grad_distances[n, h, w, k] = (
                            grad_alpha * (-1.0 / sigma) * prob * alpha
                        )
    return grad_distances


facebook-github-bot's avatar
facebook-github-bot committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def softmax_blend_naive(colors, fragments, blend_params):
    """
    Naive for loop based implementation of softmax blending.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    zbuf = fragments.zbuf
    sigma = blend_params.sigma
    gamma = blend_params.gamma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    # Near and far clipping planes
    zfar = 100.0
    znear = 1.0

    bk_color = blend_params.background_color
    if not torch.is_tensor(bk_color):
        bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device)

    # Background color component
    delta = np.exp(1e-10 / gamma) * 1e-10
    delta = torch.tensor(delta).to(device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
103
                weights_k = torch.zeros(K, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
                zmax = 0.0

                # Loop over K to find max z.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        if zinv > zmax:
                            zmax = zinv

                # Loop over K faces to calculate 2D distance based probability
                # map and zbuf based weights for colors.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                        weights_k[k] = prob * torch.exp((zinv - zmax) / gamma)

                denom = weights_k.sum() + delta
                weights = weights_k / denom
                cols = (weights[..., None] * colors[n, h, w, :, :]).sum(dim=0)
                pixel_colors[n, h, w, :3] = cols
                pixel_colors[n, h, w, :3] += (delta / denom) * bk_color
                pixel_colors[n, h, w, 3] = 1.0 - alpha

129
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
130
131


132
class TestBlending(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
133
134
135
    def setUp(self) -> None:
        torch.manual_seed(42)

Nikhila Ravi's avatar
Nikhila Ravi committed
136
    def _compare_impls(
137
        self, fn1, fn2, args1, args2, grad_var1=None, grad_var2=None, compare_grads=True
Nikhila Ravi's avatar
Nikhila Ravi committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    ):

        out1 = fn1(*args1)
        out2 = fn2(*args2)
        self.assertTrue(torch.allclose(out1.cpu(), out2.cpu(), atol=1e-7))

        # Check gradients
        if not compare_grads:
            return

        grad_out = torch.randn_like(out1)
        (out1 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var1, "grad"))

        (out2 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var2, "grad"))
        self.assertTrue(
155
            torch.allclose(grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5)
Nikhila Ravi's avatar
Nikhila Ravi committed
156
157
        )

facebook-github-bot's avatar
facebook-github-bot committed
158
159
    def test_hard_rgb_blend(self):
        N, H, W, K = 5, 10, 10, 20
160
        pix_to_face = torch.randint(low=-1, high=100, size=(N, H, W, K))
facebook-github-bot's avatar
facebook-github-bot committed
161
162
163
164
165
166
167
        bary_coords = torch.ones((N, H, W, K, 3))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,
            zbuf=pix_to_face,  # dummy
            dists=pix_to_face,  # dummy
        )
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        colors = torch.randn((N, H, W, K, 3))
        blend_params = BlendParams(1e-4, 1e-4, (0.5, 0.5, 1))
        images = hard_rgb_blend(colors, fragments, blend_params)

        # Examine if the foreground colors are correct.
        is_foreground = pix_to_face[..., 0] >= 0
        self.assertClose(images[is_foreground][:, :3], colors[is_foreground][..., 0, :])

        # Examine if the background colors are correct.
        for i in range(3):  # i.e. RGB
            channel_color = blend_params.background_color[i]
            self.assertTrue(images[~is_foreground][..., i].eq(channel_color).all())

        # Examine the alpha channel is correct
        self.assertTrue(images[..., 3].eq(1).all())
facebook-github-bot's avatar
facebook-github-bot committed
183

Nikhila Ravi's avatar
Nikhila Ravi committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def test_sigmoid_alpha_blend_manual_gradients(self):
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
        N, S, K = 2, 3, 2
        device = torch.device("cuda")
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
199
        dists = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists,
        )
        blend_params = BlendParams(sigma=1e-3)
        pix_cols = sigmoid_blend_naive_loop(colors, fragments, blend_params)
        grad_out = torch.randn_like(pix_cols)

        # Backward pass
        pix_cols.backward(grad_out)
        grad_dists = sigmoid_blend_naive_loop_backward(
            grad_out, pix_cols, fragments, blend_params
        )
        self.assertTrue(torch.allclose(dists.grad, grad_dists, atol=1e-7))

    def test_sigmoid_alpha_blend_python(self):
facebook-github-bot's avatar
facebook-github-bot committed
218
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
219
        Test outputs of python tensorised function and python loop
facebook-github-bot's avatar
facebook-github-bot committed
220
221
        """

Nikhila Ravi's avatar
Nikhila Ravi committed
222
223
224
225
226
227
228
229
230
231
232
233
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
        N, S, K = 2, 10, 5
        device = torch.device("cuda")
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
facebook-github-bot's avatar
facebook-github-bot committed
234
235
        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
236
        dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
237
        dists2 = dists1.detach().clone()
facebook-github-bot's avatar
facebook-github-bot committed
238
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
239

facebook-github-bot's avatar
facebook-github-bot committed
240
241
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
242
243
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
244
245
246
247
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
248
249
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
250
251
252
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
253
254
255
256
257
258
259
260
261
262
263
264
265
        blend_params = BlendParams(sigma=1e-2)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)

        self._compare_impls(
            sigmoid_alpha_blend,
            sigmoid_blend_naive_loop,
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
266
267

    def test_softmax_rgb_blend(self):
268
        # Create dummy outputs of rasterization simulating a cube in the center
facebook-github-bot's avatar
facebook-github-bot committed
269
270
        # of the image with surrounding padded values.
        N, S, K = 1, 8, 2
Nikhila Ravi's avatar
Nikhila Ravi committed
271
        device = torch.device("cuda")
Nikhila Ravi's avatar
Nikhila Ravi committed
272
273
274
        pix_to_face = torch.full(
            (N, S, S, K), fill_value=-1, dtype=torch.int64, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
275
        h = int(S / 2)
Nikhila Ravi's avatar
Nikhila Ravi committed
276
277
278
        pix_to_face_full = torch.randint(
            size=(N, h, h, K), low=0, high=100, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
279
280
281
        s = int(S / 4)
        e = int(0.75 * S)
        pix_to_face[:, s:e, s:e, :] = pix_to_face_full
Nikhila Ravi's avatar
Nikhila Ravi committed
282
        empty = torch.tensor([], device=device)
facebook-github-bot's avatar
facebook-github-bot committed
283

Nikhila Ravi's avatar
Nikhila Ravi committed
284
        random_sign_flip = torch.rand((N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
285
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
286
        zbuf1 = torch.randn(size=(N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
287
288
289

        # randomly flip the sign of the distance
        # (-) means inside triangle, (+) means outside triangle.
290
        dists1 = torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
facebook-github-bot's avatar
facebook-github-bot committed
291
292
293
294
        dists2 = dists1.clone()
        zbuf2 = zbuf1.clone()
        dists1.requires_grad = True
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
295
        colors = torch.randn((N, S, S, K, 3), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
296
297
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
298
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
299
300
301
302
303
            zbuf=zbuf1,
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
304
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
305
306
307
308
            zbuf=zbuf2,
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
309
310
311
312
313
314
315
316
317
318
319
320
        blend_params = BlendParams(sigma=1e-3)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)
        self._compare_impls(
            softmax_rgb_blend,
            softmax_blend_naive,
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
321

Nikhila Ravi's avatar
Nikhila Ravi committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    @staticmethod
    def bm_sigmoid_alpha_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
        device: str = "cpu",
    ):
        if torch.cuda.is_available() and "cuda:" in device:
            # If a device other than the default is used, set the device explicity.
            torch.cuda.set_device(device)

        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K), device=device)
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
347
        dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists1,
        )
        blend_params = BlendParams(sigma=1e-3)
        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
            images = sigmoid_alpha_blend(colors, fragments, blend_params)
            images.sum().backward()
            torch.cuda.synchronize()

        return fn

    @staticmethod
    def bm_softmax_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
        device: str = "cpu",
    ):
        if torch.cuda.is_available() and "cuda:" in device:
            # If a device other than the default is used, set the device explicity.
            torch.cuda.set_device(device)

        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K), device=device)
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
390
        dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
391
392
        zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
        fragments = Fragments(
393
            pix_to_face=pix_to_face, bary_coords=empty, zbuf=zbuf, dists=dists1  # dummy
Nikhila Ravi's avatar
Nikhila Ravi committed
394
395
396
397
398
399
400
401
402
403
404
405
        )
        blend_params = BlendParams(sigma=1e-3)

        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
            images = softmax_rgb_blend(colors, fragments, blend_params)
            images.sum().backward()
            torch.cuda.synchronize()

        return fn
406
407

    def test_blend_params(self):
408
        """Test color parameter of BlendParams().
Nikhila Ravi's avatar
Nikhila Ravi committed
409
410
            Assert passed value overrides default value.
            """
411
412
413
414
        bp_default = BlendParams()
        bp_new = BlendParams(background_color=(0.5, 0.5, 0.5))
        self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5))
        self.assertEqual(bp_default.background_color, (1.0, 1.0, 1.0))