test_data_llff.py 5.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import unittest

from pytorch3d.implicitron.dataset.blender_dataset_map_provider import (
    BlenderDatasetMapProvider,
)
13
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource
14
15
16
17
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.llff_dataset_map_provider import (
    LlffDatasetMapProvider,
)
18
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
19
from pytorch3d.renderer import PerspectiveCameras
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from tests.common_testing import TestCaseMixin


# These tests are only run internally, where the data is available.
internal = os.environ.get("FB_TEST", False)
inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False)
skip_tests = not internal or inside_re_worker


@unittest.skipIf(skip_tests, "no data")
class TestDataLlff(TestCaseMixin, unittest.TestCase):
    def test_synthetic(self):
        expand_args_fields(BlenderDatasetMapProvider)

        provider = BlenderDatasetMapProvider(
            base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego",
            object_name="lego",
        )
        dataset_map = provider.get_dataset_map()

        for name, length in [("train", 100), ("val", 100), ("test", 200)]:
            dataset = getattr(dataset_map, name)
            self.assertEqual(len(dataset), length)
            # try getting a value
            value = dataset[0]
45
            self.assertEqual(value.image_rgb.shape, (3, 800, 800))
46
47
48
49
            self.assertEqual(value.fg_probability.shape, (1, 800, 800))
            # corner of image is background
            self.assertEqual(value.fg_probability[0, 0, 0], 0)
            self.assertEqual(value.fg_probability.max(), 1.0)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
            self.assertIsInstance(value, FrameData)

    def test_llff(self):
        expand_args_fields(LlffDatasetMapProvider)

        provider = LlffDatasetMapProvider(
            base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
            object_name="fern",
        )
        dataset_map = provider.get_dataset_map()

        for name, length, frame_type in [
            ("train", 17, "known"),
            ("test", 3, "unseen"),
            ("val", 3, "unseen"),
        ]:
            dataset = getattr(dataset_map, name)
            self.assertEqual(len(dataset), length)
            # try getting a value
            value = dataset[0]
            self.assertIsInstance(value, FrameData)
            self.assertEqual(value.frame_type, frame_type)
72
            self.assertEqual(value.image_rgb.shape, (3, 378, 504))
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

        self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
        for batch in dataset_map.test.get_eval_batches():
            self.assertEqual(len(batch), 1)
            self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")

    def test_include_known_frames(self):
        expand_args_fields(LlffDatasetMapProvider)

        provider = LlffDatasetMapProvider(
            base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
            object_name="fern",
            n_known_frames_for_test=2,
        )
        dataset_map = provider.get_dataset_map()

        for name, types in [
            ("train", ["known"] * 17),
            ("val", ["unseen"] * 3 + ["known"] * 17),
            ("test", ["unseen"] * 3 + ["known"] * 17),
        ]:
            dataset = getattr(dataset_map, name)
            self.assertEqual(len(dataset), len(types))
            for i, frame_type in enumerate(types):
                value = dataset[i]
                self.assertEqual(value.frame_type, frame_type)
99
                self.assertIsNone(value.fg_probability)
100
101
102
103
104
105
106

        self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
        for batch in dataset_map.test.get_eval_batches():
            self.assertEqual(len(batch), 3)
            self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")
            for i in batch[1:]:
                self.assertEqual(dataset_map.test[i].frame_type, "known")
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def test_loaders(self):
        args = get_default_args(ImplicitronDataSource)
        args.dataset_map_provider_class_type = "BlenderDatasetMapProvider"
        args.data_loader_map_provider_class_type = "RandomDataLoaderMapProvider"
        dataset_args = args.dataset_map_provider_BlenderDatasetMapProvider_args
        dataset_args.object_name = "lego"
        dataset_args.base_dir = "manifold://co3d/tree/nerf_data/nerf_synthetic/lego"

        data_source = ImplicitronDataSource(**args)
        _, data_loaders = data_source.get_datasets_and_dataloaders()
        for i in data_loaders.train:
            self.assertEqual(i.frame_type, ["known"])
            self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
        for i in data_loaders.val:
            self.assertEqual(i.frame_type, ["unseen"])
            self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
        for i in data_loaders.test:
            self.assertEqual(i.frame_type, ["unseen"])
            self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
127
128
129
130

        cameras = data_source.get_all_train_cameras()
        self.assertIsInstance(cameras, PerspectiveCameras)
        self.assertEqual(len(cameras), 100)