visualize_reconstruction.py 12.6 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""Script to visualize a previously trained model. Example call:

    projects/implicitron_trainer/visualize_reconstruction.py
    exp_dir='./exps/checkpoint_dir' visdom_show_preds=True visdom_port=8097
    n_eval_cameras=40 render_size="[64,64]" video_size="[256,256]"
"""

import math
import os
import random
import sys
from typing import Optional, Tuple

import numpy as np
import torch
import torch.nn.functional as Fu
from experiment import init_model
from omegaconf import OmegaConf
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
27
from pytorch3d.implicitron.dataset.dataset_base import FrameData
28
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
29
from pytorch3d.implicitron.dataset.utils import is_train_frame
30
from pytorch3d.implicitron.models.base_model import EvaluationMode
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
31
32
33
34
35
36
37
38
39
40
41
42
43
from pytorch3d.implicitron.tools.configurable import get_default_args
from pytorch3d.implicitron.tools.eval_video_trajectory import (
    generate_eval_video_cameras,
)
from pytorch3d.implicitron.tools.video_writer import VideoWriter
from pytorch3d.implicitron.tools.vis_utils import (
    get_visdom_connection,
    make_depth_image,
)
from tqdm import tqdm


def render_sequence(
44
    dataset: JsonIndexDataset,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    sequence_name: str,
    model: torch.nn.Module,
    video_path,
    n_eval_cameras=40,
    fps=20,
    max_angle=2 * math.pi,
    trajectory_type="circular_lsq_fit",
    trajectory_scale=1.1,
    scene_center=(0.0, 0.0, 0.0),
    up=(0.0, -1.0, 0.0),
    traj_offset=0.0,
    n_source_views=9,
    viz_env="debug",
    visdom_show_preds=False,
    visdom_server="http://127.0.0.1",
    visdom_port=8097,
    num_workers=10,
    seed=None,
    video_resize=None,
):
    if seed is None:
        seed = hash(sequence_name)
    print(f"Loading all data of sequence '{sequence_name}'.")
68
    seq_idx = list(dataset.sequence_indices_in_order(sequence_name))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    train_data = _load_whole_dataset(dataset, seq_idx, num_workers=num_workers)
    assert all(train_data.sequence_name[0] == sn for sn in train_data.sequence_name)
    sequence_set_name = "train" if is_train_frame(train_data.frame_type)[0] else "test"
    print(f"Sequence set = {sequence_set_name}.")
    train_cameras = train_data.camera
    time = torch.linspace(0, max_angle, n_eval_cameras + 1)[:n_eval_cameras]
    test_cameras = generate_eval_video_cameras(
        train_cameras,
        time=time,
        n_eval_cams=n_eval_cameras,
        trajectory_type=trajectory_type,
        trajectory_scale=trajectory_scale,
        scene_center=scene_center,
        up=up,
        focal_length=None,
        principal_point=torch.zeros(n_eval_cameras, 2),
        traj_offset_canonical=[0.0, 0.0, traj_offset],
    )

    # sample the source views reproducibly
    with torch.random.fork_rng():
        torch.manual_seed(seed)
        source_views_i = torch.randperm(len(seq_idx))[:n_source_views]
    # add the first dummy view that will get replaced with the target camera
    source_views_i = Fu.pad(source_views_i, [1, 0])
    source_views = [seq_idx[i] for i in source_views_i.tolist()]
    batch = _load_whole_dataset(dataset, source_views, num_workers=num_workers)
    assert all(batch.sequence_name[0] == sn for sn in batch.sequence_name)

    preds_total = []
    for n in tqdm(range(n_eval_cameras), total=n_eval_cameras):
        # set the first batch camera to the target camera
        for k in ("R", "T", "focal_length", "principal_point"):
            getattr(batch.camera, k)[0] = getattr(test_cameras[n], k)

        # Move to cuda
        net_input = batch.cuda()
        with torch.no_grad():
            preds = model(**{**net_input, "evaluation_mode": EvaluationMode.EVALUATION})

            # make sure we dont overwrite something
            assert all(k not in preds for k in net_input.keys())
            preds.update(net_input)  # merge everything into one big dict

            # Render the predictions to images
            rendered_pred = images_from_preds(preds)
            preds_total.append(rendered_pred)

            # show the preds every 5% of the export iterations
            if visdom_show_preds and (
                n % max(n_eval_cameras // 20, 1) == 0 or n == n_eval_cameras - 1
            ):
                viz = get_visdom_connection(server=visdom_server, port=visdom_port)
                show_predictions(
                    preds_total,
                    sequence_name=batch.sequence_name[0],
                    viz=viz,
                    viz_env=viz_env,
                )

    print(f"Exporting videos for sequence {sequence_name} ...")
    generate_prediction_videos(
        preds_total,
        sequence_name=batch.sequence_name[0],
        viz=viz,
        viz_env=viz_env,
        fps=fps,
        video_path=video_path,
        resize=video_resize,
    )


def _load_whole_dataset(dataset, idx, num_workers=10):
    load_all_dataloader = torch.utils.data.DataLoader(
        torch.utils.data.Subset(dataset, idx),
        batch_size=len(idx),
        num_workers=num_workers,
        shuffle=False,
        collate_fn=FrameData.collate,
    )
    return next(iter(load_all_dataloader))


def images_from_preds(preds):
    imout = {}
    for k in (
        "image_rgb",
        "images_render",
        "fg_probability",
        "masks_render",
        "depths_render",
        "depth_map",
        "_all_source_images",
    ):
        if k == "_all_source_images" and "image_rgb" in preds:
            src_ims = preds["image_rgb"][1:].cpu().detach().clone()
            v = _stack_images(src_ims, None)[None]
        else:
            if k not in preds or preds[k] is None:
                print(f"cant show {k}")
                continue
            v = preds[k].cpu().detach().clone()
        if k.startswith("depth"):
            mask_resize = Fu.interpolate(
                preds["masks_render"],
                size=preds[k].shape[2:],
                mode="nearest",
            )
            v = make_depth_image(preds[k], mask_resize)
        if v.shape[1] == 1:
            v = v.repeat(1, 3, 1, 1)
        imout[k] = v.detach().cpu()

    return imout


def _stack_images(ims, size):
    ba = ims.shape[0]
    H = int(np.ceil(np.sqrt(ba)))
    W = H
    n_add = H * W - ba
    if n_add > 0:
        ims = torch.cat((ims, torch.zeros_like(ims[:1]).repeat(n_add, 1, 1, 1)))

    ims = ims.view(H, W, *ims.shape[1:])
    cated = torch.cat([torch.cat(list(row), dim=2) for row in ims], dim=1)
    if size is not None:
        cated = Fu.interpolate(cated[None], size=size, mode="bilinear")[0]
    return cated.clamp(0.0, 1.0)


def show_predictions(
    preds,
    sequence_name,
    viz,
    viz_env="visualizer",
    predicted_keys=(
        "images_render",
        "masks_render",
        "depths_render",
        "_all_source_images",
    ),
    n_samples=10,
    one_image_width=200,
):
    """Given a list of predictions visualize them into a single image using visdom."""
    assert isinstance(preds, list)

    pred_all = []
    # Randomly choose a subset of the rendered images, sort by ordr in the sequence
    n_samples = min(n_samples, len(preds))
    pred_idx = sorted(random.sample(list(range(len(preds))), n_samples))
    for predi in pred_idx:
        # Make the concatentation for the same camera vertically
        pred_all.append(
            torch.cat(
                [
                    torch.nn.functional.interpolate(
                        preds[predi][k].cpu(),
                        scale_factor=one_image_width / preds[predi][k].shape[3],
                        mode="bilinear",
                    ).clamp(0.0, 1.0)
                    for k in predicted_keys
                ],
                dim=2,
            )
        )
    # Concatenate the images horizontally
    pred_all_cat = torch.cat(pred_all, dim=3)[0]
    viz.image(
        pred_all_cat,
        win="show_predictions",
        env=viz_env,
        opts={"title": f"pred_{sequence_name}"},
    )


def generate_prediction_videos(
    preds,
    sequence_name,
    viz,
    viz_env="visualizer",
    predicted_keys=(
        "images_render",
        "masks_render",
        "depths_render",
        "_all_source_images",
    ),
    fps=20,
    video_path="/tmp/video",
    resize=None,
):
    """Given a list of predictions create and visualize rotating videos of the
    objects using visdom.
    """
    assert isinstance(preds, list)

    # make sure the target video directory exists
    os.makedirs(os.path.dirname(video_path), exist_ok=True)

    # init a video writer for each predicted key
    vws = {}
    for k in predicted_keys:
        vws[k] = VideoWriter(out_path=f"{video_path}_{sequence_name}_{k}.mp4", fps=fps)

    for rendered_pred in tqdm(preds):
        for k in predicted_keys:
            vws[k].write_frame(
                rendered_pred[k][0].detach().cpu().numpy(),
                resize=resize,
            )

    for k in predicted_keys:
        vws[k].get_video(quiet=True)
        print(f"Generated {vws[k].out_path}.")
        viz.video(
            videofile=vws[k].out_path,
            env=viz_env,
            win=k,  # we reuse the same window otherwise visdom dies
            opts={"title": sequence_name + " " + k},
        )


def export_scenes(
    exp_dir: str = "",
    restrict_sequence_name: Optional[str] = None,
    output_directory: Optional[str] = None,
    render_size: Tuple[int, int] = (512, 512),
    video_size: Optional[Tuple[int, int]] = None,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
298
    split: str = "train",  # train | val | test
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    n_source_views: int = 9,
    n_eval_cameras: int = 40,
    visdom_server="http://127.0.0.1",
    visdom_port=8097,
    visdom_show_preds: bool = False,
    visdom_env: Optional[str] = None,
    gpu_idx: int = 0,
):
    # In case an output directory is specified use it. If no output_directory
    # is specified create a vis folder inside the experiment directory
    if output_directory is None:
        output_directory = os.path.join(exp_dir, "vis")
    else:
        output_directory = output_directory
    if not os.path.exists(output_directory):
        os.makedirs(output_directory)

    # Set the random seeds
    torch.manual_seed(0)
    np.random.seed(0)

    # Get the config from the experiment_directory,
    # and overwrite relevant fields
    config = _get_config_from_experiment_directory(exp_dir)
    config.gpu_idx = gpu_idx
    config.exp_dir = exp_dir
    # important so that the CO3D dataset gets loaded in full
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
326
327
328
329
    dataset_args = (
        config.data_source_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
    )
    dataset_args.test_on_train = False
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
330
331
332
333
    # Set the rendering image size
    config.generic_model_args.render_image_width = render_size[0]
    config.generic_model_args.render_image_height = render_size[1]
    if restrict_sequence_name is not None:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
334
        dataset_args.restrict_sequence_name = restrict_sequence_name
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
335
336
337
338
339
340
341
342
343
344
345

    # Set up the CUDA env for the visualization
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu_idx)

    # Load the previously trained model
    model, _, _ = init_model(config, force_load=True, load_model_only=True)
    model.cuda()
    model.eval()

    # Setup the dataset
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
346
    datasource = ImplicitronDataSource(**config.data_source_args)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
347
348
    dataset_map = datasource.dataset_map_provider.get_dataset_map()
    dataset = dataset_map[split]
349
350
    if dataset is None:
        raise ValueError(f"{split} dataset not provided")
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
351
352

    # iterate over the sequences in the dataset
353
    for sequence_name in dataset.sequence_names():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        with torch.no_grad():
            render_sequence(
                dataset,
                sequence_name,
                model,
                video_path="{}/video".format(output_directory),
                n_source_views=n_source_views,
                visdom_show_preds=visdom_show_preds,
                n_eval_cameras=n_eval_cameras,
                visdom_server=visdom_server,
                visdom_port=visdom_port,
                viz_env=f"visualizer_{config.visdom_env}"
                if visdom_env is None
                else visdom_env,
                video_resize=video_size,
            )


def _get_config_from_experiment_directory(experiment_directory):
    cfg_file = os.path.join(experiment_directory, "expconfig.yaml")
    config = OmegaConf.load(cfg_file)
    return config


def main(argv):
    # automatically parses arguments of export_scenes
    cfg = OmegaConf.create(get_default_args(export_scenes))
    cfg.update(OmegaConf.from_cli())
    with torch.no_grad():
        export_scenes(**cfg)


if __name__ == "__main__":
    main(sys.argv)