test_raymarching.py 6.46 KB
Newer Older
David Novotny's avatar
David Novotny committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import torch
from common_testing import TestCaseMixin
from pytorch3d.renderer import AbsorptionOnlyRaymarcher, EmissionAbsorptionRaymarcher


class TestRaymarching(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        torch.manual_seed(42)

    @staticmethod
    def _init_random_rays(
        n_rays=10, n_pts_per_ray=9, device="cuda", dtype=torch.float32
    ):
        """
        Generate a batch of ray points with features, densities, and z-coodinates
        such that their EmissionAbsorption renderring results in
        feature renders `features_gt`, depth renders `depths_gt`,
        and opacity renders `opacities_gt`.
        """

        # generate trivial ray z-coordinates of sampled points coinciding with
        # each point's order along a ray.
        rays_z = torch.arange(n_pts_per_ray, dtype=dtype, device=device)[None].repeat(
            n_rays, 1
        )

        # generate ground truth depth values of the underlying surface.
        depths_gt = torch.randint(
            low=1, high=n_pts_per_ray + 2, size=(n_rays,)
        ).type_as(rays_z)

        # compute ideal densities that are 0 before the surface and 1 after
        # the corresponding ground truth depth value
        rays_densities = (rays_z >= depths_gt[..., None]).type_as(rays_z)[..., None]
        opacities_gt = (depths_gt < n_pts_per_ray).type_as(rays_z)

        # generate random per-ray features
        rays_features = torch.rand(
            (n_rays, n_pts_per_ray, 3), device=rays_z.device, dtype=rays_z.dtype
        )

        # infer the expected feature render "features_gt"
        gt_surface = ((rays_z - depths_gt[..., None]).abs() <= 1e-4).type_as(rays_z)
        features_gt = (rays_features * gt_surface[..., None]).sum(dim=-2)

        return (
            rays_z,
            rays_densities,
            rays_features,
            depths_gt,
            features_gt,
            opacities_gt,
        )

    @staticmethod
    def raymarcher(
        raymarcher_type=EmissionAbsorptionRaymarcher, n_rays=10, n_pts_per_ray=10
    ):
        (
            rays_z,
            rays_densities,
            rays_features,
            depths_gt,
            features_gt,
            opacities_gt,
        ) = TestRaymarching._init_random_rays(
            n_rays=n_rays, n_pts_per_ray=n_pts_per_ray
        )

        raymarcher = raymarcher_type()

        def run_raymarcher():
            raymarcher(
                rays_densities=rays_densities,
                rays_features=rays_features,
                rays_z=rays_z,
            )
            torch.cuda.synchronize()

        return run_raymarcher

    def test_emission_absorption_inputs(self):
        """
        Test the checks of validity of the inputs to `EmissionAbsorptionRaymarcher`.
        """

        # init the EA raymarcher
        raymarcher_ea = EmissionAbsorptionRaymarcher()

        # bad ways of passing densities and features
        # [rays_densities, rays_features, rays_z]
        bad_inputs = [
            [torch.rand(10, 5, 4), None],
            [torch.Tensor(3)[0], torch.rand(10, 5, 4)],
            [1.0, torch.rand(10, 5, 4)],
            [torch.rand(10, 5, 4), 1.0],
            [torch.rand(10, 5, 4), None],
            [torch.rand(10, 5, 4), torch.rand(10, 5, 4)],
            [torch.rand(10, 5, 4), torch.rand(10, 5, 4, 3)],
            [torch.rand(10, 5, 4, 3), torch.rand(10, 5, 4, 3)],
        ]

        for bad_input in bad_inputs:
            with self.assertRaises(ValueError):
                raymarcher_ea(*bad_input)

    def test_absorption_only_inputs(self):
        """
        Test the checks of validity of the inputs to `AbsorptionOnlyRaymarcher`.
        """

        # init the AO raymarcher
        raymarcher_ao = AbsorptionOnlyRaymarcher()

        # bad ways of passing densities and features
        # [rays_densities, rays_features, rays_z]
        bad_inputs = [[torch.Tensor(3)[0]]]

        for bad_input in bad_inputs:
            with self.assertRaises(ValueError):
                raymarcher_ao(*bad_input)

    def test_emission_absorption(self):
        """
        Test the EA raymarching algorithm.
        """
        (
            rays_z,
            rays_densities,
            rays_features,
            depths_gt,
            features_gt,
            opacities_gt,
        ) = TestRaymarching._init_random_rays(
            n_rays=1000, n_pts_per_ray=9, device=None, dtype=torch.float32
        )

        # init the EA raymarcher
        raymarcher_ea = EmissionAbsorptionRaymarcher()

        # allow gradients for a differentiability check
        rays_densities.requires_grad = True
        rays_features.requires_grad = True

        # render the features first and check with gt
        data_render = raymarcher_ea(rays_densities, rays_features)
        features_render, opacities_render = data_render[..., :-1], data_render[..., -1]
        self.assertClose(opacities_render, opacities_gt)
        self.assertClose(
            features_render * opacities_render[..., None],
            features_gt * opacities_gt[..., None],
        )

        # get the depth map by rendering the ray z components and check with gt
        depths_render = raymarcher_ea(rays_densities, rays_z[..., None])[..., 0]
        self.assertClose(depths_render * opacities_render, depths_gt * opacities_gt)

        # check differentiability
        loss = features_render.mean()
        loss.backward()
        for field in (rays_densities, rays_features):
            self.assertTrue(field.grad.data.isfinite().all())

    def test_absorption_only(self):
        """
        Test the AO raymarching algorithm.
        """
        (
            rays_z,
            rays_densities,
            rays_features,
            depths_gt,
            features_gt,
            opacities_gt,
        ) = TestRaymarching._init_random_rays(
            n_rays=1000, n_pts_per_ray=9, device=None, dtype=torch.float32
        )

        # init the AO raymarcher
        raymarcher_ao = AbsorptionOnlyRaymarcher()

        # allow gradients for a differentiability check
        rays_densities.requires_grad = True

        # render opacities, check with gt and check that returned features are None
        opacities_render = raymarcher_ao(rays_densities)[..., 0]
        self.assertClose(opacities_render, opacities_gt)

        # check differentiability
        loss = opacities_render.mean()
        loss.backward()
        self.assertTrue(rays_densities.grad.data.isfinite().all())