"vscode:/vscode.git/clone" did not exist on "16c75484604a7f5f0acf50961fc026e04ddec464"
test_meshes.py 40.8 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

5
6
import numpy as np
import torch
facebook-github-bot's avatar
facebook-github-bot committed
7
from common_testing import TestCaseMixin
8
from pytorch3d.structures.meshes import Meshes
facebook-github-bot's avatar
facebook-github-bot committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


class TestMeshes(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def init_mesh(
        num_meshes: int = 10,
        max_v: int = 100,
        max_f: int = 300,
        lists_to_tensors: bool = False,
        device: str = "cpu",
    ):
        """
        Function to generate a Meshes object of N meshes with
        random numbers of vertices and faces.

        Args:
            num_meshes: Number of meshes to generate.
            max_v: Max number of vertices per mesh.
            max_f: Max number of faces per mesh.
            lists_to_tensors: Determines whether the generated meshes should be
                              constructed from lists (=False) or
                              a tensor (=True) of faces/verts.

        Returns:
            Meshes object.
        """
        device = torch.device(device)

        verts_list = []
        faces_list = []

        # Randomly generate numbers of faces and vertices in each mesh.
        if lists_to_tensors:
            # If we define faces/verts with tensors, f/v has to be the
            # same for each mesh in the batch.
            f = torch.randint(max_f, size=(1,), dtype=torch.int32)
            v = torch.randint(3, high=max_v, size=(1,), dtype=torch.int32)
            f = f.repeat(num_meshes)
            v = v.repeat(num_meshes)
        else:
            # For lists of faces and vertices, we can sample different v/f
            # per mesh.
            f = torch.randint(max_f, size=(num_meshes,), dtype=torch.int32)
56
            v = torch.randint(3, high=max_v, size=(num_meshes,), dtype=torch.int32)
facebook-github-bot's avatar
facebook-github-bot committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

        # Generate the actual vertices and faces.
        for i in range(num_meshes):
            verts = torch.rand((v[i], 3), dtype=torch.float32, device=device)
            faces = torch.randint(
                v[i], size=(f[i], 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)

        if lists_to_tensors:
            verts_list = torch.stack(verts_list)
            faces_list = torch.stack(faces_list)

        return Meshes(verts=verts_list, faces=faces_list)

    @staticmethod
    def init_simple_mesh(device: str = "cpu"):
        """
        Returns a Meshes data structure of simple mesh examples.

        Returns:
            Meshes object.
        """
        device = torch.device(device)

        verts = [
            torch.tensor(
                [[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]],
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
90
                [[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]],
facebook-github-bot's avatar
facebook-github-bot committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
                [
                    [0.7, 0.3, 0.6],
                    [0.2, 0.4, 0.8],
                    [0.9, 0.5, 0.2],
                    [0.2, 0.3, 0.4],
                    [0.9, 0.3, 0.8],
                ],
                dtype=torch.float32,
                device=device,
            ),
        ]
        faces = [
            torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device),
108
            torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64, device=device),
facebook-github-bot's avatar
facebook-github-bot committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            torch.tensor(
                [
                    [1, 2, 0],
                    [0, 1, 3],
                    [2, 3, 1],
                    [4, 3, 2],
                    [4, 0, 1],
                    [4, 3, 1],
                    [4, 2, 1],
                ],
                dtype=torch.int64,
                device=device,
            ),
        ]
        return Meshes(verts=verts, faces=faces)

    def test_simple(self):
        mesh = TestMeshes.init_simple_mesh("cuda:0")

Nikhila Ravi's avatar
Nikhila Ravi committed
128
        # Check that faces/verts per mesh are set in init:
129
130
        self.assertClose(mesh._num_faces_per_mesh.cpu(), torch.tensor([1, 2, 7]))
        self.assertClose(mesh._num_verts_per_mesh.cpu(), torch.tensor([3, 4, 5]))
Nikhila Ravi's avatar
Nikhila Ravi committed
131
132

        # Check computed tensors
facebook-github-bot's avatar
facebook-github-bot committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        self.assertClose(
            mesh.verts_packed_to_mesh_idx().cpu(),
            torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            mesh.mesh_to_verts_packed_first_idx().cpu(), torch.tensor([0, 3, 7])
        )
        self.assertClose(
            mesh.verts_padded_to_packed_idx().cpu(),
            torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]),
        )
        self.assertClose(
            mesh.faces_packed_to_mesh_idx().cpu(),
            torch.tensor([0, 1, 1, 2, 2, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            mesh.mesh_to_faces_packed_first_idx().cpu(), torch.tensor([0, 1, 3])
        )
        self.assertClose(
152
            mesh.num_edges_per_mesh().cpu(), torch.tensor([3, 5, 10], dtype=torch.int32)
facebook-github-bot's avatar
facebook-github-bot committed
153
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
154
155
156
157
        self.assertClose(
            mesh.mesh_to_edges_packed_first_idx().cpu(),
            torch.tensor([0, 3, 8], dtype=torch.int64),
        )
facebook-github-bot's avatar
facebook-github-bot committed
158
159
160
161
162
163

    def test_simple_random_meshes(self):

        # Define the test mesh object either as a list or tensor of faces/verts.
        for lists_to_tensors in (False, True):
            N = 10
164
            mesh = TestMeshes.init_mesh(N, 100, 300, lists_to_tensors=lists_to_tensors)
facebook-github-bot's avatar
facebook-github-bot committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            verts_list = mesh.verts_list()
            faces_list = mesh.faces_list()

            # Check batch calculations.
            verts_padded = mesh.verts_padded()
            faces_padded = mesh.faces_padded()
            verts_per_mesh = mesh.num_verts_per_mesh()
            faces_per_mesh = mesh.num_faces_per_mesh()
            for n in range(N):
                v = verts_list[n].shape[0]
                f = faces_list[n].shape[0]
                self.assertClose(verts_padded[n, :v, :], verts_list[n])
                if verts_padded.shape[1] > v:
                    self.assertTrue(verts_padded[n, v:, :].eq(0).all())
                self.assertClose(faces_padded[n, :f, :], faces_list[n])
                if faces_padded.shape[1] > f:
                    self.assertTrue(faces_padded[n, f:, :].eq(-1).all())
                self.assertEqual(verts_per_mesh[n], v)
                self.assertEqual(faces_per_mesh[n], f)

            # Check compute packed.
            verts_packed = mesh.verts_packed()
            vert_to_mesh = mesh.verts_packed_to_mesh_idx()
            mesh_to_vert = mesh.mesh_to_verts_packed_first_idx()
            faces_packed = mesh.faces_packed()
            face_to_mesh = mesh.faces_packed_to_mesh_idx()
            mesh_to_face = mesh.mesh_to_faces_packed_first_idx()

            curv, curf = 0, 0
            for n in range(N):
                v = verts_list[n].shape[0]
                f = faces_list[n].shape[0]
197
198
                self.assertClose(verts_packed[curv : curv + v, :], verts_list[n])
                self.assertClose(faces_packed[curf : curf + f, :] - curv, faces_list[n])
facebook-github-bot's avatar
facebook-github-bot committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
                self.assertTrue(vert_to_mesh[curv : curv + v].eq(n).all())
                self.assertTrue(face_to_mesh[curf : curf + f].eq(n).all())
                self.assertTrue(mesh_to_vert[n] == curv)
                self.assertTrue(mesh_to_face[n] == curf)
                curv += v
                curf += f

            # Check compute edges and compare with numpy unique.
            edges = mesh.edges_packed().cpu().numpy()
            edge_to_mesh_idx = mesh.edges_packed_to_mesh_idx().cpu().numpy()
            num_edges_per_mesh = mesh.num_edges_per_mesh().cpu().numpy()

            npfaces_packed = mesh.faces_packed().cpu().numpy()
            e01 = npfaces_packed[:, [0, 1]]
            e12 = npfaces_packed[:, [1, 2]]
            e20 = npfaces_packed[:, [2, 0]]
            npedges = np.concatenate((e12, e20, e01), axis=0)
            npedges = np.sort(npedges, axis=1)

218
            unique_edges, unique_idx = np.unique(npedges, return_index=True, axis=0)
facebook-github-bot's avatar
facebook-github-bot committed
219
220
221
222
223
224
225
            self.assertTrue(np.allclose(edges, unique_edges))
            temp = face_to_mesh.cpu().numpy()
            temp = np.concatenate((temp, temp, temp), axis=0)
            edge_to_mesh = temp[unique_idx]
            self.assertTrue(np.allclose(edge_to_mesh_idx, edge_to_mesh))
            num_edges = np.bincount(edge_to_mesh, minlength=N)
            self.assertTrue(np.allclose(num_edges_per_mesh, num_edges))
Georgia Gkioxari's avatar
Georgia Gkioxari committed
226
227
228
229
230
231
232
            mesh_to_edges_packed_first_idx = (
                mesh.mesh_to_edges_packed_first_idx().cpu().numpy()
            )
            self.assertTrue(
                np.allclose(mesh_to_edges_packed_first_idx[1:], num_edges.cumsum()[:-1])
            )
            self.assertTrue(mesh_to_edges_packed_first_idx[0] == 0)
facebook-github-bot's avatar
facebook-github-bot committed
233
234
235
236
237
238
239
240
241
242

    def test_allempty(self):
        verts_list = []
        faces_list = []
        mesh = Meshes(verts=verts_list, faces=faces_list)
        self.assertEqual(len(mesh), 0)
        self.assertEqual(mesh.verts_padded().shape[0], 0)
        self.assertEqual(mesh.faces_padded().shape[0], 0)
        self.assertEqual(mesh.verts_packed().shape[0], 0)
        self.assertEqual(mesh.faces_packed().shape[0], 0)
Nikhila Ravi's avatar
Nikhila Ravi committed
243
244
        self.assertEqual(mesh.num_faces_per_mesh().shape[0], 0)
        self.assertEqual(mesh.num_verts_per_mesh().shape[0], 0)
facebook-github-bot's avatar
facebook-github-bot committed
245
246
247
248
249
250
251
252
253
254
255
256

    def test_empty(self):
        N, V, F = 10, 100, 300
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        for n in range(N):
            if valid[n]:
                v = torch.randint(
                    3, high=V, size=(1,), dtype=torch.int32, device=device
                )[0]
257
                f = torch.randint(F, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
258
                verts = torch.rand((v, 3), dtype=torch.float32, device=device)
259
                faces = torch.randint(v, size=(f, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
            else:
                verts = torch.tensor([], dtype=torch.float32, device=device)
                faces = torch.tensor([], dtype=torch.int64, device=device)
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)
        verts_padded = mesh.verts_padded()
        faces_padded = mesh.faces_padded()
        verts_per_mesh = mesh.num_verts_per_mesh()
        faces_per_mesh = mesh.num_faces_per_mesh()
        for n in range(N):
            v = len(verts_list[n])
            f = len(faces_list[n])
            if v > 0:
                self.assertClose(verts_padded[n, :v, :], verts_list[n])
                if verts_padded.shape[1] > v:
                    self.assertTrue(verts_padded[n, v:, :].eq(0).all())
            if f > 0:
                self.assertClose(faces_padded[n, :f, :], faces_list[n])
                if faces_padded.shape[1] > f:
                    self.assertTrue(faces_padded[n, f:, :].eq(-1).all())
            self.assertTrue(verts_per_mesh[n] == v)
            self.assertTrue(faces_per_mesh[n] == f)

    def test_padding(self):
        N, V, F = 10, 100, 300
        device = torch.device("cuda:0")
        verts, faces = [], []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        num_verts, num_faces = (
            torch.zeros(N, dtype=torch.int32),
            torch.zeros(N, dtype=torch.int32),
        )
        for n in range(N):
            verts.append(torch.rand((V, 3), dtype=torch.float32, device=device))
296
            this_faces = torch.full((F, 3), -1, dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
297
298
299
300
            if valid[n]:
                v = torch.randint(
                    3, high=V, size=(1,), dtype=torch.int32, device=device
                )[0]
301
                f = torch.randint(F, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
302
303
304
305
306
307
308
309
310
                this_faces[:f, :] = torch.randint(
                    v, size=(f, 3), dtype=torch.int64, device=device
                )
                num_verts[n] = v
                num_faces[n] = f
            faces.append(this_faces)

        mesh = Meshes(verts=torch.stack(verts), faces=torch.stack(faces))

Nikhila Ravi's avatar
Nikhila Ravi committed
311
        # Check verts/faces per mesh are set correctly in init.
312
        self.assertListEqual(mesh._num_faces_per_mesh.tolist(), num_faces.tolist())
Nikhila Ravi's avatar
Nikhila Ravi committed
313
        self.assertListEqual(mesh._num_verts_per_mesh.tolist(), [V] * N)
facebook-github-bot's avatar
facebook-github-bot committed
314
315
316
317
318
319

        for n, (vv, ff) in enumerate(zip(mesh.verts_list(), mesh.faces_list())):
            self.assertClose(ff, faces[n][: num_faces[n]])
            self.assertClose(vv, verts[n])

        new_faces = [ff.clone() for ff in faces]
320
321
        v = torch.randint(3, high=V, size=(1,), dtype=torch.int32, device=device)[0]
        f = torch.randint(F - 10, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        this_faces = torch.full((F, 3), -1, dtype=torch.int64, device=device)
        this_faces[10 : f + 10, :] = torch.randint(
            v, size=(f, 3), dtype=torch.int64, device=device
        )
        new_faces[3] = this_faces

        with self.assertRaisesRegex(ValueError, "Padding of faces"):
            Meshes(verts=torch.stack(verts), faces=torch.stack(new_faces))

    def test_clone(self):
        N = 5
        mesh = TestMeshes.init_mesh(N, 10, 100)
        for force in [0, 1]:
            if force:
                # force mesh to have computed attributes
                mesh.verts_packed()
                mesh.edges_packed()
                mesh.verts_padded()

            new_mesh = mesh.clone()

            # Modify tensors in both meshes.
            new_mesh._verts_list[0] = new_mesh._verts_list[0] * 5
            mesh._num_verts_per_mesh = torch.randint_like(
                mesh.num_verts_per_mesh(), high=10
            )
            # Check cloned and original Meshes objects do not share tensors.
            self.assertFalse(
                torch.allclose(new_mesh._verts_list[0], mesh._verts_list[0])
            )
            self.assertFalse(
353
                torch.allclose(mesh.num_verts_per_mesh(), new_mesh.num_verts_per_mesh())
facebook-github-bot's avatar
facebook-github-bot committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            )
            self.assertSeparate(new_mesh.verts_packed(), mesh.verts_packed())
            self.assertSeparate(new_mesh.verts_padded(), mesh.verts_padded())
            self.assertSeparate(new_mesh.faces_packed(), mesh.faces_packed())
            self.assertSeparate(new_mesh.faces_padded(), mesh.faces_padded())
            self.assertSeparate(new_mesh.edges_packed(), mesh.edges_packed())

    def test_laplacian_packed(self):
        def naive_laplacian_packed(meshes):
            verts_packed = meshes.verts_packed()
            edges_packed = meshes.edges_packed()
            V = verts_packed.shape[0]

            L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)
            for e in edges_packed:
                L[e[0], e[1]] = 1
                # symetric
                L[e[1], e[0]] = 1

            deg = L.sum(1).view(-1, 1)
            deg[deg > 0] = 1.0 / deg[deg > 0]
            L = L * deg
            diag = torch.eye(V, dtype=torch.float32, device=meshes.device)
            L.masked_fill_(diag > 0, -1)
            return L

        # Note that we don't test with random meshes for this case, as the
        # definition of Laplacian is defined for simple graphs (aka valid meshes)
        meshes = TestMeshes.init_simple_mesh("cuda:0")

        lapl_naive = naive_laplacian_packed(meshes)
        lapl = meshes.laplacian_packed().to_dense()
        # check with naive
        self.assertClose(lapl, lapl_naive)

    def test_offset_verts(self):
        def naive_offset_verts(mesh, vert_offsets_packed):
            # new Meshes class
            new_verts_packed = mesh.verts_packed() + vert_offsets_packed
            new_verts_list = list(
                new_verts_packed.split(mesh.num_verts_per_mesh().tolist(), 0)
            )
            new_faces_list = [f.clone() for f in mesh.faces_list()]
            return Meshes(verts=new_verts_list, faces=new_faces_list)

        N = 5
        mesh = TestMeshes.init_mesh(N, 10, 100)
        all_v = mesh.verts_packed().size(0)
        verts_per_mesh = mesh.num_verts_per_mesh()
        for force in [0, 1]:
            if force:
                # force mesh to have computed attributes
                mesh._compute_packed(refresh=True)
                mesh._compute_padded()
                mesh._compute_edges_packed()
                mesh.verts_padded_to_packed_idx()
                mesh._compute_face_areas_normals(refresh=True)
                mesh._compute_vertex_normals(refresh=True)

413
            deform = torch.rand((all_v, 3), dtype=torch.float32, device=mesh.device)
facebook-github-bot's avatar
facebook-github-bot committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            # new meshes class to hold the deformed mesh
            new_mesh_naive = naive_offset_verts(mesh, deform)

            new_mesh = mesh.offset_verts(deform)

            # check verts_list & faces_list
            verts_cumsum = torch.cumsum(verts_per_mesh, 0).tolist()
            verts_cumsum.insert(0, 0)
            for i in range(N):
                self.assertClose(
                    new_mesh.verts_list()[i],
                    mesh.verts_list()[i]
                    + deform[verts_cumsum[i] : verts_cumsum[i + 1]],
                )
                self.assertClose(
                    new_mesh.verts_list()[i], new_mesh_naive.verts_list()[i]
                )
431
                self.assertClose(mesh.faces_list()[i], new_mesh_naive.faces_list()[i])
facebook-github-bot's avatar
facebook-github-bot committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
                self.assertClose(
                    new_mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                )
                # check faces and vertex normals
                self.assertClose(
                    new_mesh.verts_normals_list()[i],
                    new_mesh_naive.verts_normals_list()[i],
                )
                self.assertClose(
                    new_mesh.faces_normals_list()[i],
                    new_mesh_naive.faces_normals_list()[i],
                )

            # check padded & packed
446
447
448
449
450
            self.assertClose(new_mesh.faces_padded(), new_mesh_naive.faces_padded())
            self.assertClose(new_mesh.verts_padded(), new_mesh_naive.verts_padded())
            self.assertClose(new_mesh.faces_packed(), new_mesh_naive.faces_packed())
            self.assertClose(new_mesh.verts_packed(), new_mesh_naive.verts_packed())
            self.assertClose(new_mesh.edges_packed(), new_mesh_naive.edges_packed())
facebook-github-bot's avatar
facebook-github-bot committed
451
452
453
454
455
456
457
458
459
            self.assertClose(
                new_mesh.verts_packed_to_mesh_idx(),
                new_mesh_naive.verts_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.mesh_to_verts_packed_first_idx(),
                new_mesh_naive.mesh_to_verts_packed_first_idx(),
            )
            self.assertClose(
460
                new_mesh.num_verts_per_mesh(), new_mesh_naive.num_verts_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
461
462
463
464
465
466
467
468
469
470
            )
            self.assertClose(
                new_mesh.faces_packed_to_mesh_idx(),
                new_mesh_naive.faces_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.mesh_to_faces_packed_first_idx(),
                new_mesh_naive.mesh_to_faces_packed_first_idx(),
            )
            self.assertClose(
471
                new_mesh.num_faces_per_mesh(), new_mesh_naive.num_faces_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
            )
            self.assertClose(
                new_mesh.edges_packed_to_mesh_idx(),
                new_mesh_naive.edges_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.verts_padded_to_packed_idx(),
                new_mesh_naive.verts_padded_to_packed_idx(),
            )
            self.assertTrue(all(new_mesh.valid == new_mesh_naive.valid))
            self.assertTrue(new_mesh.equisized == new_mesh_naive.equisized)

            # check face areas, normals and vertex normals
            self.assertClose(
486
                new_mesh.verts_normals_packed(), new_mesh_naive.verts_normals_packed()
facebook-github-bot's avatar
facebook-github-bot committed
487
488
            )
            self.assertClose(
489
                new_mesh.verts_normals_padded(), new_mesh_naive.verts_normals_padded()
facebook-github-bot's avatar
facebook-github-bot committed
490
491
            )
            self.assertClose(
492
                new_mesh.faces_normals_packed(), new_mesh_naive.faces_normals_packed()
facebook-github-bot's avatar
facebook-github-bot committed
493
494
            )
            self.assertClose(
495
                new_mesh.faces_normals_padded(), new_mesh_naive.faces_normals_padded()
facebook-github-bot's avatar
facebook-github-bot committed
496
497
            )
            self.assertClose(
498
                new_mesh.faces_areas_packed(), new_mesh_naive.faces_areas_packed()
facebook-github-bot's avatar
facebook-github-bot committed
499
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
500
501
502
503
            self.assertClose(
                new_mesh.mesh_to_edges_packed_first_idx(),
                new_mesh_naive.mesh_to_edges_packed_first_idx(),
            )
facebook-github-bot's avatar
facebook-github-bot committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    def test_scale_verts(self):
        def naive_scale_verts(mesh, scale):
            if not torch.is_tensor(scale):
                scale = torch.ones(len(mesh)).mul_(scale)
            # new Meshes class
            new_verts_list = [
                scale[i] * v.clone() for (i, v) in enumerate(mesh.verts_list())
            ]
            new_faces_list = [f.clone() for f in mesh.faces_list()]
            return Meshes(verts=new_verts_list, faces=new_faces_list)

        N = 5
        for test in ["tensor", "scalar"]:
            mesh = TestMeshes.init_mesh(N, 10, 100)
            for force in [0, 1]:
                if force:
                    # force mesh to have computed attributes
                    mesh.verts_packed()
                    mesh.edges_packed()
                    mesh.verts_padded()
                    mesh._compute_face_areas_normals(refresh=True)
                    mesh._compute_vertex_normals(refresh=True)

                if test == "tensor":
                    scales = torch.rand(N)
                elif test == "scalar":
                    scales = torch.rand(1)[0].item()
                new_mesh_naive = naive_scale_verts(mesh, scales)
                new_mesh = mesh.scale_verts(scales)
                for i in range(N):
                    if test == "tensor":
                        self.assertClose(
537
                            scales[i] * mesh.verts_list()[i], new_mesh.verts_list()[i]
facebook-github-bot's avatar
facebook-github-bot committed
538
539
540
                        )
                    else:
                        self.assertClose(
541
                            scales * mesh.verts_list()[i], new_mesh.verts_list()[i]
facebook-github-bot's avatar
facebook-github-bot committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
                        )
                    self.assertClose(
                        new_mesh.verts_list()[i], new_mesh_naive.verts_list()[i]
                    )
                    self.assertClose(
                        mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                    )
                    self.assertClose(
                        new_mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                    )
                    # check face and vertex normals
                    self.assertClose(
                        new_mesh.verts_normals_list()[i],
                        new_mesh_naive.verts_normals_list()[i],
                    )
                    self.assertClose(
                        new_mesh.faces_normals_list()[i],
                        new_mesh_naive.faces_normals_list()[i],
                    )

                # check padded & packed
563
564
565
566
567
                self.assertClose(new_mesh.faces_padded(), new_mesh_naive.faces_padded())
                self.assertClose(new_mesh.verts_padded(), new_mesh_naive.verts_padded())
                self.assertClose(new_mesh.faces_packed(), new_mesh_naive.faces_packed())
                self.assertClose(new_mesh.verts_packed(), new_mesh_naive.verts_packed())
                self.assertClose(new_mesh.edges_packed(), new_mesh_naive.edges_packed())
facebook-github-bot's avatar
facebook-github-bot committed
568
569
570
571
572
573
574
575
576
                self.assertClose(
                    new_mesh.verts_packed_to_mesh_idx(),
                    new_mesh_naive.verts_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.mesh_to_verts_packed_first_idx(),
                    new_mesh_naive.mesh_to_verts_packed_first_idx(),
                )
                self.assertClose(
577
                    new_mesh.num_verts_per_mesh(), new_mesh_naive.num_verts_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
578
579
580
581
582
583
584
585
586
587
                )
                self.assertClose(
                    new_mesh.faces_packed_to_mesh_idx(),
                    new_mesh_naive.faces_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.mesh_to_faces_packed_first_idx(),
                    new_mesh_naive.mesh_to_faces_packed_first_idx(),
                )
                self.assertClose(
588
                    new_mesh.num_faces_per_mesh(), new_mesh_naive.num_faces_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
                )
                self.assertClose(
                    new_mesh.edges_packed_to_mesh_idx(),
                    new_mesh_naive.edges_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.verts_padded_to_packed_idx(),
                    new_mesh_naive.verts_padded_to_packed_idx(),
                )
                self.assertTrue(all(new_mesh.valid == new_mesh_naive.valid))
                self.assertTrue(new_mesh.equisized == new_mesh_naive.equisized)

                # check face areas, normals and vertex normals
                self.assertClose(
                    new_mesh.verts_normals_packed(),
                    new_mesh_naive.verts_normals_packed(),
                )
                self.assertClose(
                    new_mesh.verts_normals_padded(),
                    new_mesh_naive.verts_normals_padded(),
                )
                self.assertClose(
                    new_mesh.faces_normals_packed(),
                    new_mesh_naive.faces_normals_packed(),
                )
                self.assertClose(
                    new_mesh.faces_normals_padded(),
                    new_mesh_naive.faces_normals_padded(),
                )
                self.assertClose(
619
                    new_mesh.faces_areas_packed(), new_mesh_naive.faces_areas_packed()
facebook-github-bot's avatar
facebook-github-bot committed
620
                )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
621
622
623
624
                self.assertClose(
                    new_mesh.mesh_to_edges_packed_first_idx(),
                    new_mesh_naive.mesh_to_edges_packed_first_idx(),
                )
facebook-github-bot's avatar
facebook-github-bot committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

    def test_extend_list(self):
        N = 10
        mesh = TestMeshes.init_mesh(5, 10, 100)
        for force in [0, 1]:
            if force:
                # force some computes to happen
                mesh._compute_packed(refresh=True)
                mesh._compute_padded()
                mesh._compute_edges_packed()
                mesh.verts_padded_to_packed_idx()
            new_mesh = mesh.extend(N)
            self.assertEqual(len(mesh) * 10, len(new_mesh))
            for i in range(len(mesh)):
                for n in range(N):
                    self.assertClose(
                        mesh.verts_list()[i], new_mesh.verts_list()[i * N + n]
                    )
                    self.assertClose(
                        mesh.faces_list()[i], new_mesh.faces_list()[i * N + n]
                    )
                    self.assertTrue(mesh.valid[i] == new_mesh.valid[i * N + n])
            self.assertAllSeparate(
                mesh.verts_list()
                + new_mesh.verts_list()
                + mesh.faces_list()
                + new_mesh.faces_list()
            )
            self.assertTrue(new_mesh._verts_packed is None)
            self.assertTrue(new_mesh._faces_packed is None)
            self.assertTrue(new_mesh._verts_padded is None)
            self.assertTrue(new_mesh._faces_padded is None)
            self.assertTrue(new_mesh._edges_packed is None)

        with self.assertRaises(ValueError):
            mesh.extend(N=-1)

    def test_to(self):
        mesh = TestMeshes.init_mesh(5, 10, 100, device=torch.device("cuda:0"))
        device = torch.device("cuda:1")

        new_mesh = mesh.to(device)
        self.assertTrue(new_mesh.device == device)
        self.assertTrue(mesh.device == torch.device("cuda:0"))

    def test_split_mesh(self):
        mesh = TestMeshes.init_mesh(5, 10, 100)
        split_sizes = [2, 3]
        split_meshes = mesh.split(split_sizes)
        self.assertTrue(len(split_meshes[0]) == 2)
        self.assertTrue(
            split_meshes[0].verts_list()
677
            == [mesh.get_mesh_verts_faces(0)[0], mesh.get_mesh_verts_faces(1)[0]]
facebook-github-bot's avatar
facebook-github-bot committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        )
        self.assertTrue(len(split_meshes[1]) == 3)
        self.assertTrue(
            split_meshes[1].verts_list()
            == [
                mesh.get_mesh_verts_faces(2)[0],
                mesh.get_mesh_verts_faces(3)[0],
                mesh.get_mesh_verts_faces(4)[0],
            ]
        )

        split_sizes = [2, 0.3]
        with self.assertRaises(ValueError):
            mesh.split(split_sizes)

    def test_get_mesh_verts_faces(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
700
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)

        for i, (V, F) in enumerate(verts_faces):
            verts, faces = mesh.get_mesh_verts_faces(i)
            self.assertTrue(len(verts) == V)
            self.assertClose(verts, verts_list[i])
            self.assertTrue(len(faces) == F)
            self.assertClose(faces, faces_list[i])

        with self.assertRaises(ValueError):
            mesh.get_mesh_verts_faces(5)
        with self.assertRaises(ValueError):
            mesh.get_mesh_verts_faces(0.2)

    def test_get_bounding_boxes(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        for (V, F) in [(10, 100)]:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
724
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
            verts_list.append(verts)
            faces_list.append(faces)

        mins = torch.min(verts, dim=0)[0]
        maxs = torch.max(verts, dim=0)[0]
        bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0)
        mesh = Meshes(verts=verts_list, faces=faces_list)
        bboxes = mesh.get_bounding_boxes()
        self.assertClose(bboxes_gt, bboxes)

    def test_padded_to_packed_idx(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200), (30, 300)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
742
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
743
744
745
746
747
748
749
750
751
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)
        verts_padded_to_packed_idx = mesh.verts_padded_to_packed_idx()
        verts_packed = mesh.verts_packed()
        verts_padded = mesh.verts_padded()
        verts_padded_flat = verts_padded.view(-1, 3)

752
        self.assertClose(verts_padded_flat[verts_padded_to_packed_idx], verts_packed)
facebook-github-bot's avatar
facebook-github-bot committed
753
754
755
756
757
758
759
760
761
762
763

        idx = verts_padded_to_packed_idx.view(-1, 1).expand(-1, 3)
        self.assertClose(verts_padded_flat.gather(0, idx), verts_packed)

    def test_getitem(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200), (30, 300)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
764
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)

        def check_equal(selected, indices):
            for selectedIdx, index in enumerate(indices):
                self.assertClose(
                    selected.verts_list()[selectedIdx], mesh.verts_list()[index]
                )
                self.assertClose(
                    selected.faces_list()[selectedIdx], mesh.faces_list()[index]
                )

        # int index
        index = 1
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == 1)
        check_equal(mesh_selected, [index])

        # list index
        index = [1, 2]
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == len(index))
        check_equal(mesh_selected, index)

        # slice index
        index = slice(0, 2, 1)
        mesh_selected = mesh[index]
        check_equal(mesh_selected, [0, 1])

        # bool tensor
        index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device)
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == index.sum())
        check_equal(mesh_selected, [0, 2])

        # int tensor
        index = torch.tensor([1, 2], dtype=torch.int64, device=device)
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == index.numel())
        check_equal(mesh_selected, index.tolist())

        # invalid index
        index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        with self.assertRaises(IndexError):
            mesh_selected = mesh[index]
        index = 1.2
        with self.assertRaises(IndexError):
            mesh_selected = mesh[index]

    def test_compute_faces_areas(self):
        verts = torch.tensor(
            [
                [0.0, 0.0, 0.0],
                [0.5, 0.0, 0.0],
                [0.5, 0.5, 0.0],
                [0.5, 0.0, 0.0],
                [0.25, 0.8, 0.0],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor([[0, 1, 2], [0, 3, 4]], dtype=torch.int64)
        mesh = Meshes(verts=[verts], faces=[faces])

        face_areas = mesh.faces_areas_packed()
        expected_areas = torch.tensor([0.125, 0.2])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
832
        self.assertClose(face_areas, expected_areas)
facebook-github-bot's avatar
facebook-github-bot committed
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

    def test_compute_normals(self):

        # Simple case with one mesh where normals point in either +/- ijk
        verts = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.6, 0.8, 0.0],
                [0.0, 0.3, 0.2],
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
                [0.5, 0.0, 0.2],
                [0.6, 0.0, 0.5],
                [0.8, 0.0, 0.7],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor(
            [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=torch.int64
        )
        mesh = Meshes(verts=[verts], faces=[faces])

        verts_normals_expected = torch.tensor(
            [
                [0.0, 0.0, 1.0],
                [0.0, 0.0, 1.0],
                [0.0, 0.0, 1.0],
                [-1.0, 0.0, 0.0],
                [-1.0, 0.0, 0.0],
                [-1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ]
        )
        faces_normals_expected = verts_normals_expected[[0, 3, 6, 9], :]

        self.assertTrue(
            torch.allclose(mesh.verts_normals_list()[0], verts_normals_expected)
        )
        self.assertTrue(
            torch.allclose(mesh.faces_normals_list()[0], faces_normals_expected)
        )
        self.assertTrue(
            torch.allclose(mesh.verts_normals_packed(), verts_normals_expected)
        )
        self.assertTrue(
            torch.allclose(mesh.faces_normals_packed(), faces_normals_expected)
        )

        # Multiple meshes in the batch with equal sized meshes
        meshes_extended = mesh.extend(3)
        for m in meshes_extended.verts_normals_list():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
893
            self.assertClose(m, verts_normals_expected)
facebook-github-bot's avatar
facebook-github-bot committed
894
        for f in meshes_extended.faces_normals_list():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
895
            self.assertClose(f, faces_normals_expected)
facebook-github-bot's avatar
facebook-github-bot committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

        # Multiple meshes in the batch with different sized meshes
        # Check padded and packed normals are the correct sizes.
        verts2 = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.6, 0.8, 0.0],
                [0.0, 0.3, 0.2],
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
            ],
            dtype=torch.float32,
        )
        faces2 = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.int64)
        verts_list = [verts, verts2]
        faces_list = [faces, faces2]
        meshes = Meshes(verts=verts_list, faces=faces_list)
        verts_normals_padded = meshes.verts_normals_padded()
        faces_normals_padded = meshes.faces_normals_padded()

        for n in range(len(meshes)):
            v = verts_list[n].shape[0]
            f = faces_list[n].shape[0]
            if verts_normals_padded.shape[1] > v:
                self.assertTrue(verts_normals_padded[n, v:, :].eq(0).all())
                self.assertTrue(
                    torch.allclose(
                        verts_normals_padded[n, :v, :].view(-1, 3),
                        verts_normals_expected[:v, :],
                    )
                )
            if faces_normals_padded.shape[1] > f:
                self.assertTrue(faces_normals_padded[n, f:, :].eq(0).all())
                self.assertTrue(
                    torch.allclose(
                        faces_normals_padded[n, :f, :].view(-1, 3),
                        faces_normals_expected[:f, :],
                    )
                )

        verts_normals_packed = meshes.verts_normals_packed()
        faces_normals_packed = meshes.faces_normals_packed()
        self.assertTrue(
940
            list(verts_normals_packed.shape) == [verts.shape[0] + verts2.shape[0], 3]
facebook-github-bot's avatar
facebook-github-bot committed
941
942
        )
        self.assertTrue(
943
            list(faces_normals_packed.shape) == [faces.shape[0] + faces2.shape[0], 3]
facebook-github-bot's avatar
facebook-github-bot committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        )

        # Single mesh where two faces share one vertex so the normal is
        # the weighted sum of the two face normals.
        verts = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.0, 0.3, 0.2],  # vertex is shared between two faces
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor([[0, 1, 2], [2, 3, 4]], dtype=torch.int64)
        mesh = Meshes(verts=[verts], faces=[faces])

        verts_normals_expected = torch.tensor(
            [
                [-0.2408, -0.9631, -0.1204],
                [-0.2408, -0.9631, -0.1204],
                [-0.9389, -0.3414, -0.0427],
                [-1.0000, 0.0000, 0.0000],
                [-1.0000, 0.0000, 0.0000],
            ]
        )
        faces_normals_expected = torch.tensor(
            [[-0.2408, -0.9631, -0.1204], [-1.0000, 0.0000, 0.0000]]
        )
        self.assertTrue(
            torch.allclose(
                mesh.verts_normals_list()[0], verts_normals_expected, atol=4e-5
            )
        )
        self.assertTrue(
            torch.allclose(
                mesh.faces_normals_list()[0], faces_normals_expected, atol=4e-5
            )
        )

        # Check empty mesh has empty normals
        meshes = Meshes(verts=[], faces=[])
        self.assertEqual(meshes.verts_normals_packed().shape[0], 0)
        self.assertEqual(meshes.verts_normals_padded().shape[0], 0)
        self.assertEqual(meshes.verts_normals_list(), [])
        self.assertEqual(meshes.faces_normals_packed().shape[0], 0)
        self.assertEqual(meshes.faces_normals_padded().shape[0], 0)
        self.assertEqual(meshes.faces_normals_list(), [])

    def test_compute_faces_areas_cpu_cuda(self):
        num_meshes = 10
        max_v = 100
        max_f = 300
        mesh_cpu = TestMeshes.init_mesh(num_meshes, max_v, max_f, device="cpu")
        device = torch.device("cuda:0")
        mesh_cuda = mesh_cpu.to(device)

        face_areas_cpu = mesh_cpu.faces_areas_packed()
        face_normals_cpu = mesh_cpu.faces_normals_packed()
        face_areas_cuda = mesh_cuda.faces_areas_packed()
        face_normals_cuda = mesh_cuda.faces_normals_packed()
        self.assertClose(face_areas_cpu, face_areas_cuda.cpu(), atol=1e-6)
        # because of the normalization of the normals with arbitrarily small values,
        # normals can become unstable. Thus only compare normals, for faces
        # with areas > eps=1e-6
        nonzero = face_areas_cpu > 1e-6
        self.assertClose(
1011
            face_normals_cpu[nonzero], face_normals_cuda.cpu()[nonzero], atol=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
1012
1013
1014
1015
        )

    @staticmethod
    def compute_packed_with_init(
1016
        num_meshes: int = 10, max_v: int = 100, max_f: int = 300, device: str = "cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    ):
        mesh = TestMeshes.init_mesh(num_meshes, max_v, max_f, device=device)
        torch.cuda.synchronize()

        def compute_packed():
            mesh._compute_packed(refresh=True)
            torch.cuda.synchronize()

        return compute_packed

    @staticmethod
    def compute_padded_with_init(
1029
        num_meshes: int = 10, max_v: int = 100, max_f: int = 300, device: str = "cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
    ):
        mesh = TestMeshes.init_mesh(num_meshes, max_v, max_f, device=device)
        torch.cuda.synchronize()

        def compute_padded():
            mesh._compute_padded(refresh=True)
            torch.cuda.synchronize()

        return compute_padded