eval_demo.py 7.05 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import copy
import dataclasses
import os
11
from typing import cast, Optional
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

import lpips
import torch
from pytorch3d.implicitron.dataset.dataloader_zoo import dataloader_zoo
from pytorch3d.implicitron.dataset.dataset_zoo import CO3D_CATEGORIES, dataset_zoo
from pytorch3d.implicitron.dataset.implicitron_dataset import (
    FrameData,
    ImplicitronDataset,
    ImplicitronDatasetBase,
)
from pytorch3d.implicitron.dataset.utils import is_known_frame
from pytorch3d.implicitron.evaluation.evaluate_new_view_synthesis import (
    aggregate_nvs_results,
    eval_batch,
    pretty_print_nvs_metrics,
    summarize_nvs_eval_results,
)
from pytorch3d.implicitron.models.model_dbir import ModelDBIR
from pytorch3d.implicitron.tools.utils import dataclass_to_cuda_
from tqdm import tqdm


def main() -> None:
    """
    Evaluates new view synthesis metrics of a simple depth-based image rendering
    (DBIR) model for multisequence/singlesequence tasks for several categories.

    The evaluation is conducted on the same data as in [1] and, hence, the results
    are directly comparable to the numbers reported in [1].

    References:
        [1] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone,
                P. Labatut, D. Novotny:
            Common Objects in 3D: Large-Scale Learning
                and Evaluation of Real-life 3D Category Reconstruction
    """

    task_results = {}
    for task in ("singlesequence", "multisequence"):
        task_results[task] = []
        for category in CO3D_CATEGORIES[: (20 if task == "singlesequence" else 10)]:
            for single_sequence_id in (0, 1) if task == "singlesequence" else (None,):
                category_result = evaluate_dbir_for_category(
                    category, task=task, single_sequence_id=single_sequence_id
                )
                print("")
                print(
                    f"Results for task={task}; category={category};"
                    + (
                        f" sequence={single_sequence_id}:"
                        if single_sequence_id is not None
                        else ":"
                    )
                )
                pretty_print_nvs_metrics(category_result)
                print("")

                task_results[task].append(category_result)
            _print_aggregate_results(task, task_results)

    for task in task_results:
        _print_aggregate_results(task, task_results)


def evaluate_dbir_for_category(
    category: str = "apple",
    bg_color: float = 0.0,
    task: str = "singlesequence",
    single_sequence_id: Optional[int] = None,
    num_workers: int = 16,
):
    """
    Evaluates new view synthesis metrics of a simple depth-based image rendering
    (DBIR) model for a given task, category, and sequence (in case task=='singlesequence').

    Args:
        category: Object category.
        bg_color: Background color of the renders.
        task: Evaluation task. Either singlesequence or multisequence.
        single_sequence_id: The ID of the evaluiation sequence for the singlesequence task.
        num_workers: The number of workers for the employed dataloaders.

    Returns:
        category_result: A dictionary of quantitative metrics.
    """

    single_sequence_id = single_sequence_id if single_sequence_id is not None else -1

    torch.manual_seed(42)

    if task not in ["multisequence", "singlesequence"]:
        raise ValueError("'task' has to be either 'multisequence' or 'singlesequence'")

    datasets = dataset_zoo(
        category=category,
        dataset_root=os.environ["CO3D_DATASET_ROOT"],
        assert_single_seq=task == "singlesequence",
        dataset_name=f"co3d_{task}",
        test_on_train=False,
        load_point_clouds=True,
        test_restrict_sequence_id=single_sequence_id,
    )

    dataloaders = dataloader_zoo(
        datasets,
        dataset_name=f"co3d_{task}",
    )

    test_dataset = datasets["test"]
    test_dataloader = dataloaders["test"]

    if task == "singlesequence":
        # all_source_cameras are needed for evaluation of the
        # target camera difficulty
        # pyre-fixme[16]: `ImplicitronDataset` has no attribute `frame_annots`.
        sequence_name = test_dataset.frame_annots[0]["frame_annotation"].sequence_name
        all_source_cameras = _get_all_source_cameras(
            test_dataset, sequence_name, num_workers=num_workers
        )
    else:
        all_source_cameras = None

    image_size = cast(ImplicitronDataset, test_dataset).image_width

    if image_size is None:
        raise ValueError("Image size should be set in the dataset")

    # init the simple DBIR model
    model = ModelDBIR(
        image_size=image_size,
        bg_color=bg_color,
        max_points=int(1e5),
    )
    model.cuda()

    # init the lpips model for eval
    lpips_model = lpips.LPIPS(net="vgg")
    lpips_model = lpips_model.cuda()

    per_batch_eval_results = []
    print("Evaluating DBIR model ...")
    for frame_data in tqdm(test_dataloader):
        frame_data = dataclass_to_cuda_(frame_data)
        preds = model(**dataclasses.asdict(frame_data))
        nvs_prediction = copy.deepcopy(preds["nvs_prediction"])
        per_batch_eval_results.append(
            eval_batch(
                frame_data,
                nvs_prediction,
                bg_color=bg_color,
                lpips_model=lpips_model,
                source_cameras=all_source_cameras,
            )
        )

    category_result_flat, category_result = summarize_nvs_eval_results(
        per_batch_eval_results, task
    )

    return category_result["results"]


def _print_aggregate_results(task, task_results) -> None:
    """
    Prints the aggregate metrics for a given task.
    """
    aggregate_task_result = aggregate_nvs_results(task_results[task])
    print("")
    print(f"Aggregate results for task={task}:")
    pretty_print_nvs_metrics(aggregate_task_result)
    print("")


def _get_all_source_cameras(
    dataset: ImplicitronDatasetBase, sequence_name: str, num_workers: int = 8
):
    """
    Loads all training cameras of a given sequence.

    The set of all seen cameras is needed for evaluating the viewpoint difficulty
    for the singlescene evaluation.

    Args:
        dataset: Co3D dataset object.
        sequence_name: The name of the sequence.
        num_workers: The number of for the utilized dataloader.
    """

    # load all source cameras of the sequence
201
    seq_idx = list(dataset.sequence_indices_in_order(sequence_name))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    dataset_for_loader = torch.utils.data.Subset(dataset, seq_idx)
    (all_frame_data,) = torch.utils.data.DataLoader(
        dataset_for_loader,
        shuffle=False,
        batch_size=len(dataset_for_loader),
        num_workers=num_workers,
        collate_fn=FrameData.collate,
    )
    is_known = is_known_frame(all_frame_data.frame_type)
    source_cameras = all_frame_data.camera[torch.where(is_known)[0]]
    return source_cameras


if __name__ == "__main__":
    main()