test_ray_point_refiner.py 5.82 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest
8
from itertools import product
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
9
10

import torch
11
12
13
14
15

from pytorch3d.implicitron.models.renderer.ray_point_refiner import (
    apply_blurpool_on_weights,
    RayPointRefiner,
)
Darijan Gudelj's avatar
Darijan Gudelj committed
16
from pytorch3d.implicitron.models.renderer.ray_sampler import ImplicitronRayBundle
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
from tests.common_testing import TestCaseMixin
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
19
20
21
22
23
24


class TestRayPointRefiner(TestCaseMixin, unittest.TestCase):
    def test_simple(self):
        length = 15
        n_pts_per_ray = 10

25
        for add_input_samples, use_blurpool in product([False, True], [False, True]):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
27
28
29
            ray_point_refiner = RayPointRefiner(
                n_pts_per_ray=n_pts_per_ray,
                random_sampling=False,
                add_input_samples=add_input_samples,
30
                blurpool_weights=use_blurpool,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
31
32
            )
            lengths = torch.arange(length, dtype=torch.float32).expand(3, 25, length)
Darijan Gudelj's avatar
Darijan Gudelj committed
33
34
35
36
37
38
39
40
            bundle = ImplicitronRayBundle(
                lengths=lengths,
                origins=None,
                directions=None,
                xys=None,
                camera_ids=None,
                camera_counts=None,
            )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
            weights = torch.ones(3, 25, length)
            refined = ray_point_refiner(bundle, weights)

            self.assertIsNone(refined.directions)
            self.assertIsNone(refined.origins)
            self.assertIsNone(refined.xys)
            expected = torch.linspace(0.5, length - 1.5, n_pts_per_ray)
            expected = expected.expand(3, 25, n_pts_per_ray)
            if add_input_samples:
                full_expected = torch.cat((lengths, expected), dim=-1).sort()[0]
            else:
                full_expected = expected
            self.assertClose(refined.lengths, full_expected)

            ray_point_refiner_random = RayPointRefiner(
                n_pts_per_ray=n_pts_per_ray,
                random_sampling=True,
                add_input_samples=add_input_samples,
59
                blurpool_weights=use_blurpool,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
60
61
62
63
64
65
66
67
68
69
70
71
            )
            refined_random = ray_point_refiner_random(bundle, weights)
            lengths_random = refined_random.lengths
            self.assertEqual(lengths_random.shape, full_expected.shape)
            if not add_input_samples:
                self.assertGreater(lengths_random.min().item(), 0.5)
                self.assertLess(lengths_random.max().item(), length - 1.5)

            # Check sorted
            self.assertTrue(
                (lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
            )
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def test_simple_use_bins(self):
        """
        Same spirit than test_simple but use bins in the ImplicitronRayBunle.
        It has been duplicated to avoid cognitive overload while reading the
        test (lot of if else).
        """
        length = 15
        n_pts_per_ray = 10

        for add_input_samples, use_blurpool in product([False, True], [False, True]):
            ray_point_refiner = RayPointRefiner(
                n_pts_per_ray=n_pts_per_ray,
                random_sampling=False,
                add_input_samples=add_input_samples,
            )

            bundle = ImplicitronRayBundle(
                lengths=None,
                bins=torch.arange(length + 1, dtype=torch.float32).expand(
                    3, 25, length + 1
                ),
                origins=None,
                directions=None,
                xys=None,
                camera_ids=None,
                camera_counts=None,
            )
            weights = torch.ones(3, 25, length)
            refined = ray_point_refiner(bundle, weights, blurpool_weights=use_blurpool)

            self.assertIsNone(refined.directions)
            self.assertIsNone(refined.origins)
            self.assertIsNone(refined.xys)
            expected_bins = torch.linspace(0, length, n_pts_per_ray + 1)
            expected_bins = expected_bins.expand(3, 25, n_pts_per_ray + 1)
            if add_input_samples:
                expected_bins = torch.cat((bundle.bins, expected_bins), dim=-1).sort()[
                    0
                ]
            full_expected = torch.lerp(
                expected_bins[..., :-1], expected_bins[..., 1:], 0.5
            )

            self.assertClose(refined.lengths, full_expected)

            ray_point_refiner_random = RayPointRefiner(
                n_pts_per_ray=n_pts_per_ray,
                random_sampling=True,
                add_input_samples=add_input_samples,
            )

            refined_random = ray_point_refiner_random(
                bundle, weights, blurpool_weights=use_blurpool
            )
            lengths_random = refined_random.lengths
            self.assertEqual(lengths_random.shape, full_expected.shape)
            if not add_input_samples:
                self.assertGreater(lengths_random.min().item(), 0)
                self.assertLess(lengths_random.max().item(), length)

            # Check sorted
            self.assertTrue(
                (lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
            )

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def test_apply_blurpool_on_weights(self):
        weights = torch.tensor(
            [
                [0.5, 0.6, 0.7],
                [0.5, 0.3, 0.9],
            ]
        )
        expected_weights = 0.5 * torch.tensor(
            [
                [0.5 + 0.6, 0.6 + 0.7, 0.7 + 0.7],
                [0.5 + 0.5, 0.5 + 0.9, 0.9 + 0.9],
            ]
        )
        out_weights = apply_blurpool_on_weights(weights)
        self.assertTrue(torch.allclose(out_weights, expected_weights))

    def test_shapes_apply_blurpool_on_weights(self):
        weights = torch.randn((5, 4, 3, 2, 1))
        out_weights = apply_blurpool_on_weights(weights)
        self.assertEqual((5, 4, 3, 2, 1), out_weights.shape)