test_subdivide_meshes.py 7.98 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8
9


import unittest

10
import torch
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
from pytorch3d.ops.subdivide_meshes import SubdivideMeshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
15
16
from .common_testing import TestCaseMixin

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
18

class TestSubdivideMeshes(TestCaseMixin, unittest.TestCase):
19
    def simple_subdivide(self, with_init=False):
facebook-github-bot's avatar
facebook-github-bot committed
20
21
22
23
24
25
26
27
28
29
30
        # Create a mesh with one face and check the subdivided mesh has
        # 4 faces with the correct vertex coordinates.
        device = torch.device("cuda:0")
        verts = torch.tensor(
            [[0.5, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            dtype=torch.float32,
            device=device,
            requires_grad=True,
        )
        faces = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
        mesh = Meshes(verts=[verts], faces=[faces])
31
32
        mesh_init = mesh.clone() if with_init else None
        subdivide = SubdivideMeshes(meshes=mesh_init)
facebook-github-bot's avatar
facebook-github-bot committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        new_mesh = subdivide(mesh)

        # Subdivided face:
        #
        #           v0
        #           /\
        #          /  \
        #         / f0 \
        #     v4 /______\ v3
        #       /\      /\
        #      /  \ f3 /  \
        #     / f2 \  / f1 \
        #    /______\/______\
        #  v2       v5       v1
        #
        gt_subdivide_verts = torch.tensor(
            [
                [0.5, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.75, 0.5, 0.0],
                [0.25, 0.5, 0.0],
                [0.5, 0.0, 0.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        gt_subdivide_faces = torch.tensor(
            [[0, 3, 4], [1, 5, 3], [2, 4, 5], [5, 4, 3]],
            dtype=torch.int64,
            device=device,
        )
        new_verts, new_faces = new_mesh.get_mesh_verts_faces(0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
66
67
        self.assertClose(new_verts, gt_subdivide_verts)
        self.assertClose(new_faces, gt_subdivide_faces)
facebook-github-bot's avatar
facebook-github-bot committed
68
69
        self.assertTrue(new_verts.requires_grad == verts.requires_grad)

70
71
72
73
74
75
    def test_simple_subdivide(self):
        self.simple_subdivide()

    def test_simple_subdivide_with_init(self):
        self.simple_subdivide(with_init=True)

facebook-github-bot's avatar
facebook-github-bot committed
76
77
78
79
80
81
82
83
84
85
    def test_heterogeneous_meshes(self):
        device = torch.device("cuda:0")
        verts1 = torch.tensor(
            [[0.5, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            dtype=torch.float32,
            device=device,
            requires_grad=True,
        )
        faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
        verts2 = torch.tensor(
86
            [[0.5, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.5, 1.0, 0.0]],
facebook-github-bot's avatar
facebook-github-bot committed
87
88
89
90
            dtype=torch.float32,
            device=device,
            requires_grad=True,
        )
91
92
93
        faces2 = torch.tensor([[0, 1, 2], [0, 3, 1]], dtype=torch.int64, device=device)
        faces3 = torch.tensor([[0, 1, 2], [0, 2, 3]], dtype=torch.int64, device=device)
        mesh = Meshes(verts=[verts1, verts2, verts2], faces=[faces1, faces2, faces3])
facebook-github-bot's avatar
facebook-github-bot committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        subdivide = SubdivideMeshes()
        new_mesh = subdivide(mesh.clone())

        gt_subdivided_verts1 = torch.tensor(
            [
                [0.5, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.75, 0.5, 0.0],
                [0.25, 0.5, 0.0],
                [0.5, 0.0, 0.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        gt_subdivided_faces1 = torch.tensor(
            [[0, 3, 4], [1, 5, 3], [2, 4, 5], [5, 4, 3]],
            dtype=torch.int64,
            device=device,
        )
        # faces2:
        #
        #         v0 _______e2_______ v3
        #           /\              /
        #          /  \            /
        #         /    \          /
        #     e1 /      \ e0     / e4
        #       /        \      /
        #      /          \    /
        #     /            \  /
        #    /______________\/
        #  v2       e3      v1
        #
        # Subdivided faces2:
        #
        #         v0 _______v6_______ v3
        #           /\      /\      /
        #          /  \ f1 /  \ f3 /
        #         / f0 \  / f7 \  /
        #     v5 /______v4______\/v8
        #       /\      /\      /
        #      /  \ f6 /  \ f5 /
        #     / f4 \  / f2 \  /
        #    /______\/______\/
        #  v2       v7       v1
        #
        gt_subdivided_verts2 = torch.tensor(
            [
                [0.5, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [1.5, 1.0, 0.0],
                [0.75, 0.5, 0.0],
                [0.25, 0.5, 0.0],
                [1.0, 1.0, 0.0],
                [0.5, 0.0, 0.0],
                [1.25, 0.5, 0.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        gt_subdivided_faces2 = torch.tensor(
            [
                [0, 4, 5],
                [0, 6, 4],
                [1, 7, 4],
                [3, 8, 6],
                [2, 5, 7],
                [1, 4, 8],
                [7, 5, 4],
                [8, 4, 6],
            ],
            dtype=torch.int64,
            device=device,
        )
        gt_subdivided_verts3 = gt_subdivided_verts2.clone()
        gt_subdivided_verts3[-1, :] = torch.tensor(
            [0.75, 0.5, 0], dtype=torch.float32, device=device
        )
        gt_subdivided_faces3 = torch.tensor(
            [
                [0, 4, 5],
                [0, 5, 6],
                [1, 7, 4],
                [2, 8, 5],
                [2, 5, 7],
                [3, 6, 8],
                [7, 5, 4],
                [8, 6, 5],
            ],
            dtype=torch.int64,
            device=device,
        )
        new_mesh_verts1, new_mesh_faces1 = new_mesh.get_mesh_verts_faces(0)
        new_mesh_verts2, new_mesh_faces2 = new_mesh.get_mesh_verts_faces(1)
        new_mesh_verts3, new_mesh_faces3 = new_mesh.get_mesh_verts_faces(2)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
190
191
192
193
194
195
        self.assertClose(new_mesh_verts1, gt_subdivided_verts1)
        self.assertClose(new_mesh_faces1, gt_subdivided_faces1)
        self.assertClose(new_mesh_verts2, gt_subdivided_verts2)
        self.assertClose(new_mesh_faces2, gt_subdivided_faces2)
        self.assertClose(new_mesh_verts3, gt_subdivided_verts3)
        self.assertClose(new_mesh_faces3, gt_subdivided_faces3)
facebook-github-bot's avatar
facebook-github-bot committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        self.assertTrue(new_mesh_verts1.requires_grad == verts1.requires_grad)
        self.assertTrue(new_mesh_verts2.requires_grad == verts2.requires_grad)
        self.assertTrue(new_mesh_verts3.requires_grad == verts2.requires_grad)

    def test_subdivide_features(self):
        device = torch.device("cuda:0")
        mesh = ico_sphere(0, device)
        N = 10
        mesh = mesh.extend(N)
        edges = mesh.edges_packed()
        V = mesh.num_verts_per_mesh()[0]
        D = 256
        feats = torch.rand(
            (N * V, D), dtype=torch.float32, device=device, requires_grad=True
        )  # packed features
        app_feats = feats[edges].mean(1)
        subdivide = SubdivideMeshes()
        new_mesh, new_feats = subdivide(mesh, feats)
        gt_feats = torch.cat(
            (feats.view(N, V, D), app_feats.view(N, -1, D)), dim=1
        ).view(-1, D)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
217
        self.assertClose(new_feats, gt_feats)
facebook-github-bot's avatar
facebook-github-bot committed
218
219
220
        self.assertTrue(new_feats.requires_grad == gt_feats.requires_grad)

    @staticmethod
221
    def subdivide_meshes_with_init(num_meshes: int = 10, same_topo: bool = False):
facebook-github-bot's avatar
facebook-github-bot committed
222
223
224
225
226
227
228
229
230
231
232
233
234
        device = torch.device("cuda:0")
        meshes = ico_sphere(0, device=device)
        if num_meshes > 1:
            meshes = meshes.extend(num_meshes)
        meshes_init = meshes.clone() if same_topo else None
        torch.cuda.synchronize()

        def subdivide_meshes():
            subdivide = SubdivideMeshes(meshes=meshes_init)
            subdivide(meshes=meshes.clone())
            torch.cuda.synchronize()

        return subdivide_meshes