test_harmonic_embedding.py 2.03 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
2
3
4
5
6
7
8
9
10
11
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import torch
from pytorch3d.renderer.implicit import HarmonicEmbedding

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
13
from .common_testing import TestCaseMixin

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

class TestHarmonicEmbedding(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    def test_correct_output_dim(self):
        embed_fun = HarmonicEmbedding(n_harmonic_functions=2, append_input=False)
        # input_dims * (2 * n_harmonic_functions + int(append_input))
        output_dim = 3 * (2 * 2 + int(False))
        self.assertEqual(
            output_dim,
            embed_fun.get_output_dim_static(
                input_dims=3, n_harmonic_functions=2, append_input=False
            ),
        )
        self.assertEqual(output_dim, embed_fun.get_output_dim())

    def test_correct_frequency_range(self):
        embed_fun_log = HarmonicEmbedding(n_harmonic_functions=3)
        embed_fun_lin = HarmonicEmbedding(n_harmonic_functions=3, logspace=False)
        self.assertClose(embed_fun_log._frequencies, torch.FloatTensor((1.0, 2.0, 4.0)))
        self.assertClose(embed_fun_lin._frequencies, torch.FloatTensor((1.0, 2.5, 4.0)))

    def test_correct_embed_out(self):
        embed_fun = HarmonicEmbedding(n_harmonic_functions=2, append_input=False)
        x = torch.randn((1, 5))
        D = 5 * 4
        embed_out = embed_fun(x)
        self.assertEqual(embed_out.shape, (1, D))
        # Sum the squares of the respective frequencies
        sum_squares = embed_out[0, : D // 2] ** 2 + embed_out[0, D // 2 :] ** 2
        self.assertClose(sum_squares, torch.ones((D // 2)))
        embed_fun = HarmonicEmbedding(n_harmonic_functions=2, append_input=True)
        embed_out = embed_fun(x)
        self.assertClose(embed_out.shape, torch.tensor((1, 5 * 5)))
        # Last plane in output is the input
        self.assertClose(embed_out[..., -5:], x)