test_common_workaround.py 1.81 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
2
3
4
5
6
7
8
9
10
11
12
13
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import unittest

import numpy as np
import torch
from pytorch3d.common.workaround import _safe_det_3x3

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
14
15
from .common_testing import TestCaseMixin

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

class TestSafeDet3x3(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    def _test_det_3x3(self, batch_size, device):
        t = torch.rand((batch_size, 3, 3), dtype=torch.float32, device=device)
        actual_det = _safe_det_3x3(t)
        expected_det = t.det()
        self.assertClose(actual_det, expected_det, atol=1e-7)

    def test_empty_batch(self):
        self._test_det_3x3(0, torch.device("cpu"))
        self._test_det_3x3(0, torch.device("cuda:0"))

    def test_manual(self):
        t = torch.Tensor(
            [
                [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
                [[2, -5, 3], [0, 7, -2], [-1, 4, 1]],
                [[6, 1, 1], [4, -2, 5], [2, 8, 7]],
            ]
        ).to(dtype=torch.float32)
        expected_det = torch.Tensor([1, 41, -306]).to(dtype=torch.float32)
        self.assertClose(_safe_det_3x3(t), expected_det)

        device_cuda = torch.device("cuda:0")
        self.assertClose(
            _safe_det_3x3(t.to(device=device_cuda)), expected_det.to(device=device_cuda)
        )

    def test_regression(self):
        tries = 32
        device_cpu = torch.device("cpu")
        device_cuda = torch.device("cuda:0")
        batch_sizes = np.random.randint(low=1, high=128, size=tries)

        for batch_size in batch_sizes:
            self._test_det_3x3(batch_size, device_cpu)
            self._test_det_3x3(batch_size, device_cuda)