test_depth.py 3.39 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
6
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

Christoph Lassner's avatar
Christoph Lassner committed
7
8
9
10
11
12
13
14
15
16
17
"""Test the sorting of the closest spheres."""
import logging
import os
import sys
import unittest
from os import path

import imageio
import numpy as np
import torch

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
from ..common_testing import TestCaseMixin
Christoph Lassner's avatar
Christoph Lassner committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))

devices = [torch.device("cuda"), torch.device("cpu")]
IN_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
OUT_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-out.pth")


class TestDepth(TestCaseMixin, unittest.TestCase):
    """Test different numbers of channels."""

    def test_basic(self):
        from pytorch3d.renderer.points.pulsar import Renderer

        for device in devices:
            gamma = 1e-5
            max_depth = 15.0
            min_depth = 5.0
            renderer = Renderer(
                256,
                256,
                10000,
                orthogonal_projection=True,
                right_handed_system=False,
                n_channels=1,
            ).to(device)
            data = torch.load(IN_REF_FP, map_location="cpu")
Christoph Lassner's avatar
Christoph Lassner committed
47
48
            # For creating the reference files.
            # Use in case of updates.
Christoph Lassner's avatar
Christoph Lassner committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
            # data["pos"] = torch.rand_like(data["pos"])
            # data["pos"][:, 0] = data["pos"][:, 0] * 2. - 1.
            # data["pos"][:, 1] = data["pos"][:, 1] * 2. - 1.
            # data["pos"][:, 2] = data["pos"][:, 2] + 9.5
            result, result_info = renderer.forward(
                data["pos"].to(device),
                data["col"].to(device),
                data["rad"].to(device),
                data["cam_params"].to(device),
                gamma,
                min_depth=min_depth,
                max_depth=max_depth,
                return_forward_info=True,
                bg_col=torch.zeros(1, device=device, dtype=torch.float32),
                percent_allowed_difference=0.01,
            )
            depth_map = Renderer.depth_map_from_result_info_nograd(result_info)
            depth_vis = (depth_map - depth_map[depth_map > 0].min()) * 200 / (
                depth_map.max() - depth_map[depth_map > 0.0].min()
            ) + 50
            if not os.environ.get("FB_TEST", False):
                imageio.imwrite(
                    path.join(
                        path.dirname(__file__),
                        "test_out",
                        "test_depth_test_basic_depth.png",
                    ),
                    depth_vis.cpu().numpy().astype(np.uint8),
                )
Christoph Lassner's avatar
Christoph Lassner committed
78
79
            # For creating the reference files.
            # Use in case of updates.
Christoph Lassner's avatar
Christoph Lassner committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
            # torch.save(
            #     data, path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
            # )
            # torch.save(
            #     {"sphere_ids": sphere_ids, "depth_map": depth_map},
            #     path.join(path.dirname(__file__), "reference", "nr0000-out.pth"),
            # )
            # sys.exit(0)
            reference = torch.load(OUT_REF_FP, map_location="cpu")
            self.assertClose(reference["depth_map"].to(device), depth_map)


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    unittest.main()