test_channels.py 4.46 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
6
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

Christoph Lassner's avatar
Christoph Lassner committed
7
8
9
10
11
12
13
14
"""Test number of channels."""
import logging
import sys
import unittest
from os import path

import torch

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
15
from ..common_testing import TestCaseMixin
Christoph Lassner's avatar
Christoph Lassner committed
16
17
18
19
20
21
22
23
24
25
26
27


sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
devices = [torch.device("cuda"), torch.device("cpu")]


class TestChannels(TestCaseMixin, unittest.TestCase):
    """Test different numbers of channels."""

    def test_basic(self):
        """Basic forward test."""
        import torch
28
        from pytorch3d.renderer.points.pulsar import Renderer
Christoph Lassner's avatar
Christoph Lassner committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

        n_points = 10
        width = 1_000
        height = 1_000
        renderer_1 = Renderer(width, height, n_points, n_channels=1)
        renderer_3 = Renderer(width, height, n_points, n_channels=3)
        renderer_8 = Renderer(width, height, n_points, n_channels=8)
        # Generate sample data.
        torch.manual_seed(1)
        vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        vert_col = torch.rand(n_points, 8, dtype=torch.float32)
        vert_rad = torch.rand(n_points, dtype=torch.float32)
        cam_params = torch.tensor(
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
        )
        for device in devices:
            vert_pos = vert_pos.to(device)
            vert_col = vert_col.to(device)
            vert_rad = vert_rad.to(device)
            cam_params = cam_params.to(device)
            renderer_1 = renderer_1.to(device)
            renderer_3 = renderer_3.to(device)
            renderer_8 = renderer_8.to(device)
            result_1 = (
                renderer_1.forward(
                    vert_pos,
                    vert_col[:, :1],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_1 = (
                renderer_1.forward(
                    vert_pos,
                    vert_col[:, :1],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            result_3 = (
                renderer_3.forward(
                    vert_pos,
                    vert_col[:, :3],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_3 = (
                renderer_3.forward(
                    vert_pos,
                    vert_col[:, :3],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            result_8 = (
                renderer_8.forward(
                    vert_pos,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_8 = (
                renderer_8.forward(
                    vert_pos,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            self.assertClose(result_1, result_3[:, :, :1])
            self.assertClose(result_3, result_8[:, :, :3])
            self.assertClose(hits_1, hits_3)
            self.assertClose(hits_8, hits_3)


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    unittest.main()