test_circle_fitting.py 6.98 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest
from math import pi

import torch
from pytorch3d.implicitron.tools.circle_fitting import (
    _signed_area,
    fit_circle_in_2d,
    fit_circle_in_3d,
)
from pytorch3d.transforms import random_rotation
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
from tests.common_testing import TestCaseMixin
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


class TestCircleFitting(TestCaseMixin, unittest.TestCase):
    def setUp(self):
        torch.manual_seed(42)

    def _assertParallel(self, a, b, **kwargs):
        """
        Given a and b of shape (..., 3) each containing 3D vectors,
        assert that correspnding vectors are parallel. Changed sign is ok.
        """
        self.assertClose(torch.cross(a, b, dim=-1), torch.zeros_like(a), **kwargs)

    def test_simple_3d(self):
        device = torch.device("cuda:0")
        for _ in range(7):
            radius = 10 * torch.rand(1, device=device)[0]
            center = 10 * torch.rand(3, device=device)
            rot = random_rotation(device=device)
            offset = torch.rand(3, device=device)
            up = torch.rand(3, device=device)
            self._simple_3d_test(radius, center, rot, offset, up)

    def _simple_3d_test(self, radius, center, rot, offset, up):
        # angles are increasing so the points move in a well defined direction.
        angles = torch.cumsum(torch.rand(17, device=rot.device), dim=0)
        many = torch.stack(
            [torch.cos(angles), torch.sin(angles), torch.zeros_like(angles)], dim=1
        )
        source_points = (many * radius) @ rot + center[None]

        # case with no generation
        result = fit_circle_in_3d(source_points)
        self.assertClose(result.radius, radius)
        self.assertClose(result.center, center)
        self._assertParallel(result.normal, rot[2], atol=1e-5)
        self.assertEqual(result.generated_points.shape, (0, 3))

        # Generate 5 points around the circle
        n_new_points = 5
        result2 = fit_circle_in_3d(source_points, n_points=n_new_points)
        self.assertClose(result2.radius, radius)
        self.assertClose(result2.center, center)
        self.assertClose(result2.normal, result.normal)
        self.assertEqual(result2.generated_points.shape, (5, 3))

        observed_points = result2.generated_points
        self.assertClose(observed_points[0], observed_points[4], atol=1e-4)
        self.assertClose(observed_points[0], source_points[0], atol=1e-5)
        observed_normal = torch.cross(
            observed_points[0] - observed_points[2],
            observed_points[1] - observed_points[3],
            dim=-1,
        )
        self._assertParallel(observed_normal, result.normal, atol=1e-4)
        diameters = observed_points[:2] - observed_points[2:4]
        self.assertClose(
            torch.norm(diameters, dim=1), diameters.new_full((2,), 2 * radius)
        )

        # Regenerate the input points
        result3 = fit_circle_in_3d(source_points, angles=angles - angles[0])
        self.assertClose(result3.radius, radius)
        self.assertClose(result3.center, center)
        self.assertClose(result3.normal, result.normal)
        self.assertClose(result3.generated_points, source_points, atol=1e-5)

        # Test with offset
        result4 = fit_circle_in_3d(
            source_points, angles=angles - angles[0], offset=offset, up=up
        )
        self.assertClose(result4.radius, radius)
        self.assertClose(result4.center, center)
        self.assertClose(result4.normal, result.normal)
        observed_offsets = result4.generated_points - source_points

        # observed_offset is constant
        self.assertClose(
            observed_offsets.min(0).values, observed_offsets.max(0).values, atol=1e-5
        )
        # observed_offset has the right length
        self.assertClose(observed_offsets[0].norm(), offset.norm())

        self.assertClose(result.normal.norm(), torch.ones(()))
        # component of observed_offset along normal
        component = torch.dot(observed_offsets[0], result.normal)
        self.assertClose(component.abs(), offset[2].abs(), atol=1e-5)
        agree_normal = torch.dot(result.normal, up) > 0
        agree_signs = component * offset[2] > 0
        self.assertEqual(agree_normal, agree_signs)

    def test_simple_2d(self):
        radius = 7.0
        center = torch.tensor([9, 2.5])
        angles = torch.cumsum(torch.rand(17), dim=0)
        many = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1)
        source_points = (many * radius) + center[None]

        result = fit_circle_in_2d(source_points)
        self.assertClose(result.radius, torch.tensor(radius))
        self.assertClose(result.center, center)
        self.assertEqual(result.generated_points.shape, (0, 2))

        # Generate 5 points around the circle
        n_new_points = 5
        result2 = fit_circle_in_2d(source_points, n_points=n_new_points)
        self.assertClose(result2.radius, torch.tensor(radius))
        self.assertClose(result2.center, center)
        self.assertEqual(result2.generated_points.shape, (5, 2))

        observed_points = result2.generated_points
        self.assertClose(observed_points[0], observed_points[4])
        self.assertClose(observed_points[0], source_points[0], atol=1e-5)
        diameters = observed_points[:2] - observed_points[2:4]
        self.assertClose(torch.norm(diameters, dim=1), torch.full((2,), 2 * radius))

        # Regenerate the input points
        result3 = fit_circle_in_2d(source_points, angles=angles - angles[0])
        self.assertClose(result3.radius, torch.tensor(radius))
        self.assertClose(result3.center, center)
        self.assertClose(result3.generated_points, source_points, atol=1e-5)

    def test_minimum_inputs(self):
        fit_circle_in_3d(torch.rand(3, 3), n_points=10)

        with self.assertRaisesRegex(
            ValueError, "2 points are not enough to determine a circle"
        ):
            fit_circle_in_3d(torch.rand(2, 3))

    def test_signed_area(self):
        n_points = 1001
        angles = torch.linspace(0, 2 * pi, n_points)
        radius = 0.85
        center = torch.rand(2)
        circle = center + radius * torch.stack(
            [torch.cos(angles), torch.sin(angles)], dim=1
        )
        circle_area = torch.tensor(pi * radius * radius)
        self.assertClose(_signed_area(circle), circle_area)
        # clockwise is negative
        self.assertClose(_signed_area(circle.flip(0)), -circle_area)

        # Semicircles
        self.assertClose(_signed_area(circle[: (n_points + 1) // 2]), circle_area / 2)
        self.assertClose(_signed_area(circle[n_points // 2 :]), circle_area / 2)

        # A straight line bounds no area
        self.assertClose(_signed_area(torch.rand(2, 2)), torch.tensor(0.0))

        # Letter 'L' written anticlockwise.
        L_shape = [[0, 1], [0, 0], [1, 0]]
        # Triangle area is 0.5 * b * h.
        self.assertClose(_signed_area(torch.tensor(L_shape)), torch.tensor(0.5))