bm_points_normals.py 1.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import itertools

import torch
from fvcore.common.benchmark import benchmark
from pytorch3d.ops import estimate_pointcloud_normals
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
from tests.test_points_normals import TestPCLNormals
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def to_bm(num_points, use_symeig_workaround):
    device = torch.device("cuda:0")
    points_padded, _normals = TestPCLNormals.init_spherical_pcl(
        num_points=num_points, device=device, use_pointclouds=False
    )
    torch.cuda.synchronize()

    def run():
        estimate_pointcloud_normals(
            points_padded, use_symeig_workaround=use_symeig_workaround
        )
        torch.cuda.synchronize()

    return run


def bm_points_normals() -> None:
    case_grid = {
        "use_symeig_workaround": [True, False],
        "num_points": [3000, 6000],
    }
    test_cases = itertools.product(*case_grid.values())
    kwargs_list = [dict(zip(case_grid.keys(), case)) for case in test_cases]
    benchmark(
        to_bm,
        "normals",
        kwargs_list,
        warmup_iters=1,
    )


if __name__ == "__main__":
    bm_points_normals()