test_eval_cameras.py 1.53 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import unittest

import torch
from pytorch3d.implicitron.tools.eval_video_trajectory import (
    generate_eval_video_cameras,
)
14
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from pytorch3d.transforms import axis_angle_to_matrix


if os.environ.get("FB_TEST", False):
    from common_testing import TestCaseMixin
else:
    from tests.common_testing import TestCaseMixin


class TestEvalCameras(TestCaseMixin, unittest.TestCase):
    def setUp(self):
        torch.manual_seed(42)

    def test_circular(self):
        n_train_cameras = 10
        n_test_cameras = 100
        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        amplitude = 0.01
        R_jiggled = torch.bmm(
            R, axis_angle_to_matrix(torch.rand(n_train_cameras, 3) * amplitude)
        )
        cameras_train = PerspectiveCameras(R=R_jiggled, T=T)
        cameras_test = generate_eval_video_cameras(
            cameras_train, trajectory_type="circular_lsq_fit", trajectory_scale=1.0
        )

        positions_test = cameras_test.get_camera_center()
        center = positions_test.mean(0)
        self.assertClose(center, torch.zeros(3), atol=0.1)
        self.assertClose(
            (positions_test - center).norm(dim=[1]),
            torch.ones(n_test_cameras),
            atol=0.1,
        )