test_r2n2.py 14 KB
Newer Older
Luya Gao's avatar
Luya Gao committed
1
2
3
4
5
6
7
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
Sanity checks for loading R2N2.
"""
import json
import os
import unittest
Luya Gao's avatar
Luya Gao committed
8
from pathlib import Path
Luya Gao's avatar
Luya Gao committed
9

Luya Gao's avatar
Luya Gao committed
10
import numpy as np
Luya Gao's avatar
Luya Gao committed
11
import torch
Luya Gao's avatar
Luya Gao committed
12
13
from common_testing import TestCaseMixin, load_rgb_image
from PIL import Image
Luya Gao's avatar
Luya Gao committed
14
from pytorch3d.datasets import R2N2, BlenderCamera, collate_batched_meshes
Luya Gao's avatar
Luya Gao committed
15
16
17
18
19
20
from pytorch3d.renderer import (
    OpenGLPerspectiveCameras,
    PointLights,
    RasterizationSettings,
    look_at_view_transform,
)
Luya Gao's avatar
Luya Gao committed
21
22
23
from pytorch3d.renderer.cameras import get_world_to_view_transform
from pytorch3d.transforms import Transform3d
from pytorch3d.transforms.so3 import so3_exponential_map
Luya Gao's avatar
Luya Gao committed
24
25
26
27
28
29
30
31
from torch.utils.data import DataLoader


# Set these paths in order to run the tests.
R2N2_PATH = None
SHAPENET_PATH = None
SPLITS_PATH = None

Luya Gao's avatar
Luya Gao committed
32
33
34
DEBUG = False
DATA_DIR = Path(__file__).resolve().parent / "data"

Luya Gao's avatar
Luya Gao committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

class TestR2N2(TestCaseMixin, unittest.TestCase):
    def setUp(self):
        """
        Check if the data paths are given otherwise skip tests.
        """
        if SHAPENET_PATH is None or not os.path.exists(SHAPENET_PATH):
            url = "https://www.shapenet.org/"
            msg = (
                "ShapeNet data not found, download from %s, update "
                "SHAPENET_PATH at the top of the file, and rerun."
            )
            self.skipTest(msg % url)
        if R2N2_PATH is None or not os.path.exists(R2N2_PATH):
            url = "http://3d-r2n2.stanford.edu/"
            msg = (
                "R2N2 data not found, download from %s, update "
                "R2N2_PATH at the top of the file, and rerun."
            )
            self.skipTest(msg % url)
        if SPLITS_PATH is None or not os.path.exists(SPLITS_PATH):
            msg = """Splits file not found, update SPLITS_PATH at the top
                of the file, and rerun."""
            self.skipTest(msg)

    def test_load_R2N2(self):
        """
Luya Gao's avatar
Luya Gao committed
62
63
        Test the loaded train split of R2N2 return items of the correct shapes and types. Also
        check the first image returned is correct.
Luya Gao's avatar
Luya Gao committed
64
        """
65
66
        # Load dataset in the test split.
        r2n2_dataset = R2N2("test", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH)
Luya Gao's avatar
Luya Gao committed
67
68
69

        # Check total number of objects in the dataset is correct.
        with open(SPLITS_PATH) as splits:
70
71
            split_dict = json.load(splits)["test"]
        model_nums = [len(split_dict[synset]) for synset in split_dict]
Luya Gao's avatar
Luya Gao committed
72
73
        self.assertEqual(len(r2n2_dataset), sum(model_nums))

74
75
76
77
78
79
80
81
82
83
84
85
86
        # Check the numbers of loaded instances for each category are correct.
        for synset in split_dict:
            split_synset_nums = sum(
                len(split_dict[synset][model]) for model in split_dict[synset]
            )
            idx_start = r2n2_dataset.synset_start_idxs[synset]
            idx_end = idx_start + r2n2_dataset.synset_num_models[synset]
            synset_views_list = r2n2_dataset.views_per_model_list[idx_start:idx_end]
            loaded_synset_views = sum(len(views) for views in synset_views_list)
            self.assertEqual(loaded_synset_views, split_synset_nums)

        # Retrieve an object from the dataset.
        r2n2_obj = r2n2_dataset[39]
Luya Gao's avatar
Luya Gao committed
87
        # Check that verts and faces returned by __getitem__ have the correct shapes and types.
88
        verts, faces = r2n2_obj["verts"], r2n2_obj["faces"]
Luya Gao's avatar
Luya Gao committed
89
90
91
92
93
94
95
        self.assertTrue(verts.dtype == torch.float32)
        self.assertTrue(faces.dtype == torch.int64)
        self.assertEqual(verts.ndim, 2)
        self.assertEqual(verts.shape[-1], 3)
        self.assertEqual(faces.ndim, 2)
        self.assertEqual(faces.shape[-1], 3)

Luya Gao's avatar
Luya Gao committed
96
97
98
99
100
101
102
103
104
        # Check that the intrinsic matrix and extrinsic matrix have the
        # correct shapes.
        self.assertEqual(r2n2_obj["R"].shape[0], 24)
        self.assertEqual(r2n2_obj["R"].shape[1:], (3, 3))
        self.assertEqual(r2n2_obj["T"].ndim, 2)
        self.assertEqual(r2n2_obj["T"].shape[1], 3)
        self.assertEqual(r2n2_obj["K"].ndim, 3)
        self.assertEqual(r2n2_obj["K"].shape[1:], (4, 4))

Luya Gao's avatar
Luya Gao committed
105
        # Check that image batch returned by __getitem__ has the correct shape.
106
        self.assertEqual(r2n2_obj["images"].shape[0], 24)
Luya Gao's avatar
Luya Gao committed
107
        self.assertEqual(r2n2_obj["images"].shape[1:-1], (137, 137))
108
109
110
111
112
113
114
115
        self.assertEqual(r2n2_obj["images"].shape[-1], 3)
        self.assertEqual(r2n2_dataset[39, [21]]["images"].shape[0], 1)
        self.assertEqual(r2n2_dataset[39, torch.tensor([12, 21])]["images"].shape[0], 2)

        # Check models with total view counts less than 24 return image batches
        # of the correct shapes.
        self.assertEqual(r2n2_dataset[635]["images"].shape[0], 5)
        self.assertEqual(r2n2_dataset[8369]["images"].shape[0], 10)
Luya Gao's avatar
Luya Gao committed
116

Luya Gao's avatar
Luya Gao committed
117
118
119
120
121
122
123
    def test_collate_models(self):
        """
        Test collate_batched_meshes returns items of the correct shapes and types.
        Check that when collate_batched_meshes is passed to Dataloader, batches of
        the correct shapes and types are returned.
        """
        # Load dataset in the train split.
Luya Gao's avatar
Luya Gao committed
124
        r2n2_dataset = R2N2("val", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH)
Luya Gao's avatar
Luya Gao committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

        # Randomly retrieve several objects from the dataset and collate them.
        collated_meshes = collate_batched_meshes(
            [r2n2_dataset[idx] for idx in torch.randint(len(r2n2_dataset), (6,))]
        )
        # Check the collated verts and faces have the correct shapes.
        verts, faces = collated_meshes["verts"], collated_meshes["faces"]
        self.assertEqual(len(verts), 6)
        self.assertEqual(len(faces), 6)
        self.assertEqual(verts[0].shape[-1], 3)
        self.assertEqual(faces[0].shape[-1], 3)

        # Check the collated mesh has the correct shape.
        mesh = collated_meshes["mesh"]
        self.assertEqual(mesh.verts_padded().shape[0], 6)
        self.assertEqual(mesh.verts_padded().shape[-1], 3)
        self.assertEqual(mesh.faces_padded().shape[0], 6)
        self.assertEqual(mesh.faces_padded().shape[-1], 3)

        # Pass the custom collate_fn function to DataLoader and check elements
        # in batch have the correct shape.
        batch_size = 12
        r2n2_loader = DataLoader(
            r2n2_dataset, batch_size=batch_size, collate_fn=collate_batched_meshes
        )
        it = iter(r2n2_loader)
        object_batch = next(it)
        self.assertEqual(len(object_batch["synset_id"]), batch_size)
        self.assertEqual(len(object_batch["model_id"]), batch_size)
        self.assertEqual(len(object_batch["label"]), batch_size)
        self.assertEqual(object_batch["mesh"].verts_padded().shape[0], batch_size)
        self.assertEqual(object_batch["mesh"].faces_padded().shape[0], batch_size)
Luya Gao's avatar
Luya Gao committed
157
        self.assertEqual(object_batch["images"].shape[0], batch_size)
Luya Gao's avatar
Luya Gao committed
158
159
160
        self.assertEqual(object_batch["R"].shape[0], batch_size)
        self.assertEqual(object_batch["T"].shape[0], batch_size)
        self.assertEqual(object_batch["K"].shape[0], batch_size)
Luya Gao's avatar
Luya Gao committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    def test_catch_render_arg_errors(self):
        """
        Test rendering R2N2 with an invalid model_id, category or index, and
        catch corresponding errors.
        """
        # Load dataset in the train split.
        r2n2_dataset = R2N2("train", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH)

        # Try loading with an invalid model_id and catch error.
        with self.assertRaises(ValueError) as err:
            r2n2_dataset.render(model_ids=["lamp0"])
        self.assertTrue("not found in the loaded dataset" in str(err.exception))

        # Try loading with an index out of bounds and catch error.
        with self.assertRaises(IndexError) as err:
            r2n2_dataset.render(idxs=[1000000])
        self.assertTrue("are out of bounds" in str(err.exception))

Luya Gao's avatar
Luya Gao committed
180
181
182
183
184
185
186
        blend_cameras = BlenderCamera(
            R=torch.rand((3, 3, 3)), T=torch.rand((3, 3)), K=torch.rand((3, 4, 4))
        )
        with self.assertRaises(ValueError) as err:
            r2n2_dataset.render(idxs=[10, 11], cameras=blend_cameras)
        self.assertTrue("Mismatch between batch dims" in str(err.exception))

Luya Gao's avatar
Luya Gao committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    def test_render_r2n2(self):
        """
        Test rendering objects from R2N2 selected both by indices and model_ids.
        """
        # Set up device and seed for random selections.
        device = torch.device("cuda:0")
        torch.manual_seed(39)

        # Load dataset in the train split.
        r2n2_dataset = R2N2("train", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH)

        # Render first three models in the dataset.
        R, T = look_at_view_transform(1.0, 1.0, 90)
        cameras = OpenGLPerspectiveCameras(R=R, T=T, device=device)
        raster_settings = RasterizationSettings(image_size=512)
        lights = PointLights(
            location=torch.tensor([0.0, 1.0, -2.0], device=device)[None],
            # TODO: debug the source of the discrepancy in two images when rendering on GPU.
            diffuse_color=((0, 0, 0),),
            specular_color=((0, 0, 0),),
            device=device,
        )

        r2n2_by_idxs = r2n2_dataset.render(
            idxs=list(range(3)),
            device=device,
            cameras=cameras,
            raster_settings=raster_settings,
            lights=lights,
        )
        # Check that there are three images in the batch.
        self.assertEqual(r2n2_by_idxs.shape[0], 3)

        # Compare the rendered models to the reference images.
        for idx in range(3):
            r2n2_by_idxs_rgb = r2n2_by_idxs[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray((r2n2_by_idxs_rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / ("DEBUG_r2n2_render_by_idxs_%s.png" % idx)
                )
            image_ref = load_rgb_image(
                "test_r2n2_render_by_idxs_and_ids_%s.png" % idx, DATA_DIR
            )
            self.assertClose(r2n2_by_idxs_rgb, image_ref, atol=0.05)

        # Render the same models but by model_ids this time.
        r2n2_by_model_ids = r2n2_dataset.render(
            model_ids=[
                "1a4a8592046253ab5ff61a3a2a0e2484",
                "1a04dcce7027357ab540cc4083acfa57",
                "1a9d0480b74d782698f5bccb3529a48d",
            ],
            device=device,
            cameras=cameras,
            raster_settings=raster_settings,
            lights=lights,
        )

        # Compare the rendered models to the reference images.
        for idx in range(3):
            r2n2_by_model_ids_rgb = r2n2_by_model_ids[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray(
                    (r2n2_by_model_ids_rgb.numpy() * 255).astype(np.uint8)
                ).save(DATA_DIR / ("DEBUG_r2n2_render_by_model_ids_%s.png" % idx))
            image_ref = load_rgb_image(
                "test_r2n2_render_by_idxs_and_ids_%s.png" % idx, DATA_DIR
            )
            self.assertClose(r2n2_by_model_ids_rgb, image_ref, atol=0.05)

        ###############################
        # Test rendering by categories
        ###############################

        # Render a mixture of categories.
        categories = ["chair", "lamp"]
        mixed_objs = r2n2_dataset.render(
            categories=categories,
            sample_nums=[1, 2],
            device=device,
            cameras=cameras,
            raster_settings=raster_settings,
            lights=lights,
        )
        # Compare the rendered models to the reference images.
        for idx in range(3):
            mixed_rgb = mixed_objs[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray((mixed_rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / ("DEBUG_r2n2_render_by_categories_%s.png" % idx)
                )
            image_ref = load_rgb_image(
                "test_r2n2_render_by_categories_%s.png" % idx, DATA_DIR
            )
            self.assertClose(mixed_rgb, image_ref, atol=0.05)
Luya Gao's avatar
Luya Gao committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    def test_blender_camera(self):
        """
        Test BlenderCamera.
        """
        # Test get_world_to_view_transform.
        T = torch.randn(10, 3)
        R = so3_exponential_map(torch.randn(10, 3) * 3.0)
        RT = get_world_to_view_transform(R=R, T=T)
        cam = BlenderCamera(R=R, T=T)
        RT_class = cam.get_world_to_view_transform()
        self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix()))
        self.assertTrue(isinstance(RT, Transform3d))

        # Test getting camera center.
        C = cam.get_camera_center()
        C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
        self.assertTrue(torch.allclose(C, C_, atol=1e-05))
Luya Gao's avatar
Luya Gao committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

    def test_render_by_r2n2_calibration(self):
        """
        Test rendering R2N2 models with calibration matrices from R2N2's own Blender
        in batches.
        """
        # Set up device and seed for random selections.
        device = torch.device("cuda:0")
        torch.manual_seed(39)

        # Load dataset in the train split.
        r2n2_dataset = R2N2("train", SHAPENET_PATH, R2N2_PATH, SPLITS_PATH)
        model_idxs = torch.randint(1000, (2,)).tolist()
        view_idxs = torch.randint(24, (2,)).tolist()
        raster_settings = RasterizationSettings(image_size=512)
        lights = PointLights(
            location=torch.tensor([0.0, 1.0, -2.0], device=device)[None],
            # TODO(nikhilar): debug the source of the discrepancy in two images when
            # rendering on GPU.
            diffuse_color=((0, 0, 0),),
            specular_color=((0, 0, 0),),
            device=device,
        )
        r2n2_batch = r2n2_dataset.render(
            idxs=model_idxs,
            view_idxs=view_idxs,
            device=device,
            raster_settings=raster_settings,
            lights=lights,
        )
        for idx in range(4):
            r2n2_batch_rgb = r2n2_batch[idx, ..., :3].squeeze().cpu()
            if DEBUG:
                Image.fromarray((r2n2_batch_rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR
                    / ("DEBUG_r2n2_render_with_blender_calibrations_%s.png" % idx)
                )
            image_ref = load_rgb_image(
                "test_r2n2_render_with_blender_calibrations_%s.png" % idx, DATA_DIR
            )
            self.assertClose(r2n2_batch_rgb, image_ref, atol=0.05)