test_render_meshes_clipped.py 25.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


"""
Checks for mesh rasterization in the case where the camera enters the
inside of the mesh and some mesh faces are partially
behind the image plane. These faces are clipped and then rasterized.
See pytorch3d/renderer/mesh/clip.py for more details about the
clipping process.
"""
import unittest

13
14
import imageio
import numpy as np
15
import torch
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
from common_testing import TestCaseMixin, get_tests_dir, load_rgb_image
17
from pytorch3d.io import save_obj
Nikhila Ravi's avatar
Nikhila Ravi committed
18
19
20
from pytorch3d.renderer.cameras import (
    FoVPerspectiveCameras,
    PerspectiveCameras,
21
    look_at_view_transform,
Nikhila Ravi's avatar
Nikhila Ravi committed
22
)
23
24
25
26
27
28
29
30
31
32
33
from pytorch3d.renderer.lighting import PointLights
from pytorch3d.renderer.mesh import (
    ClipFrustum,
    TexturesUV,
    clip_faces,
    convert_clipped_rasterization_to_original_faces,
)
from pytorch3d.renderer.mesh.rasterize_meshes import _RasterizeFaceVerts
from pytorch3d.renderer.mesh.rasterizer import MeshRasterizer, RasterizationSettings
from pytorch3d.renderer.mesh.renderer import MeshRenderer
from pytorch3d.renderer.mesh.shader import SoftPhongShader
Nikhila Ravi's avatar
Nikhila Ravi committed
34
from pytorch3d.renderer.mesh.textures import TexturesVertex
35
from pytorch3d.structures.meshes import Meshes
Nikhila Ravi's avatar
Nikhila Ravi committed
36
from pytorch3d.utils import torus
37

38

39
40
41
# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
42
DATA_DIR = get_tests_dir() / "data"
43
44


45
class TestRenderMeshesClipping(TestCaseMixin, unittest.TestCase):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    def load_cube_mesh_with_texture(self, device="cpu", with_grad: bool = False):
        verts = torch.tensor(
            [
                [-1, 1, 1],
                [1, 1, 1],
                [1, -1, 1],
                [-1, -1, 1],
                [-1, 1, -1],
                [1, 1, -1],
                [1, -1, -1],
                [-1, -1, -1],
            ],
            device=device,
            dtype=torch.float32,
            requires_grad=with_grad,
        )

        # all faces correctly wound
        faces = torch.tensor(
            [
                [0, 1, 4],
                [4, 1, 5],
                [1, 2, 5],
                [5, 2, 6],
                [2, 7, 6],
                [2, 3, 7],
                [3, 4, 7],
                [0, 4, 3],
                [4, 5, 6],
                [4, 6, 7],
            ],
            device=device,
            dtype=torch.int64,
        )

        verts_uvs = torch.tensor(
            [
                [
                    [0, 1],
                    [1, 1],
                    [1, 0],
                    [0, 0],
                    [0.204, 0.743],
                    [0.781, 0.743],
                    [0.781, 0.154],
                    [0.204, 0.154],
                ]
            ],
            device=device,
            dtype=torch.float,
        )
        texture_map = load_rgb_image("room.jpg", DATA_DIR).to(device)
        textures = TexturesUV(
            maps=[texture_map], faces_uvs=faces.unsqueeze(0), verts_uvs=verts_uvs
        )
        mesh = Meshes([verts], [faces], textures=textures)
        if with_grad:
            return mesh, verts
        return mesh

Nikhila Ravi's avatar
Nikhila Ravi committed
106
    def debug_cube_mesh_render(self):
107
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
108
        End-End debug run of rendering a cube mesh with texture
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        from decreasing camera distances. The camera starts
        outside the cube and enters the inside of the cube.
        """
        device = torch.device("cuda:0")
        mesh = self.load_cube_mesh_with_texture(device)
        raster_settings = RasterizationSettings(
            image_size=512,
            blur_radius=1e-8,
            faces_per_pixel=5,
            z_clip_value=1e-2,
            perspective_correct=True,
            bin_size=0,
        )

        # Only ambient, no diffuse or specular
        lights = PointLights(
            device=device,
            ambient_color=((1.0, 1.0, 1.0),),
            diffuse_color=((0.0, 0.0, 0.0),),
            specular_color=((0.0, 0.0, 0.0),),
            location=[[0.0, 0.0, -3.0]],
        )

        renderer = MeshRenderer(
            rasterizer=MeshRasterizer(raster_settings=raster_settings),
            shader=SoftPhongShader(device=device, lights=lights),
        )

        # Render the cube by decreasing the distance from the camera until
        # the camera enters the cube. Check the output looks correct.
        images_list = []
        dists = np.linspace(0.1, 2.5, 20)[::-1]
Nikhila Ravi's avatar
Nikhila Ravi committed
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        for d in dists:
            R, T = look_at_view_transform(d, 0, 0)
            T[0, 1] -= 0.1  # move down in the y axis
            cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=90)
            images = renderer(mesh, cameras=cameras)
            rgb = images[0, ..., :3].cpu().detach()
            im = (rgb.numpy() * 255).astype(np.uint8)
            images_list.append(im)

        # Save a gif of the output - this should show
        # the camera moving inside the cube.
        if DEBUG:
            gif_filename = (
                "room_original.gif"
                if raster_settings.z_clip_value is None
                else "room_clipped.gif"
            )
            imageio.mimsave(DATA_DIR / gif_filename, images_list, fps=2)
            save_obj(
                f=DATA_DIR / "cube.obj",
                verts=mesh.verts_packed().cpu(),
                faces=mesh.faces_packed().cpu(),
            )

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    @staticmethod
    def clip_faces(meshes):
        verts_packed = meshes.verts_packed()
        faces_packed = meshes.faces_packed()
        face_verts = verts_packed[faces_packed]
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
        num_faces_per_mesh = meshes.num_faces_per_mesh()

        frustum = ClipFrustum(
            left=-1,
            right=1,
            top=-1,
            bottom=1,
            # In the unit tests for each case below the triangles are asummed
            #  to have already been projected onto the image plane.
            perspective_correct=False,
            z_clip_value=1e-2,
            cull=True,  # Cull to frustrum
        )

        clipped_faces = clip_faces(
            face_verts, mesh_to_face_first_idx, num_faces_per_mesh, frustum
        )
        return clipped_faces

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_grad(self):
        """
        Check that gradient flow is unaffected when the camera is inside the mesh
        """
        device = torch.device("cuda:0")
        mesh, verts = self.load_cube_mesh_with_texture(device=device, with_grad=True)
        raster_settings = RasterizationSettings(
            image_size=512,
            blur_radius=1e-5,
            faces_per_pixel=5,
            z_clip_value=1e-2,
            perspective_correct=True,
            bin_size=0,
        )

        renderer = MeshRenderer(
            rasterizer=MeshRasterizer(raster_settings=raster_settings),
            shader=SoftPhongShader(device=device),
        )
        dist = 0.4  # Camera is inside the cube
        R, T = look_at_view_transform(dist, 0, 0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=90)
        images = renderer(mesh, cameras=cameras)
        images.sum().backward()

        # Check gradients exist
        self.assertIsNotNone(verts.grad)

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    def test_case_1(self):
        """
        Case 1: Single triangle fully in front of the image plane (z=0)
        Triangle is not clipped or culled. The triangle is asummed to have
        already been projected onto the image plane so no perspective
        correction is needed.
        """
        device = "cuda:0"
        verts = torch.tensor(
            [[0.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0]],
            dtype=torch.float32,
            device=device,
        )
        faces = torch.tensor(
            [
                [0, 1, 2],
            ],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        clipped_faces = self.clip_faces(meshes)

        self.assertClose(clipped_faces.face_verts, verts[faces])
        self.assertEqual(clipped_faces.mesh_to_face_first_idx.item(), 0)
        self.assertEqual(clipped_faces.num_faces_per_mesh.item(), 1)
        self.assertIsNone(clipped_faces.faces_clipped_to_unclipped_idx)
        self.assertIsNone(clipped_faces.faces_clipped_to_conversion_idx)
        self.assertIsNone(clipped_faces.clipped_faces_neighbor_idx)
        self.assertIsNone(clipped_faces.barycentric_conversion)

    def test_case_2(self):
        """
        Case 2 triangles are fully behind the image plane (z=0) so are completely culled.
        Test with a single triangle behind the image plane.
        """

        device = "cuda:0"
        verts = torch.tensor(
            [[-1.0, 0.0, -1.0], [0.0, 1.0, -1.0], [1.0, 0.0, -1.0]],
            dtype=torch.float32,
            device=device,
        )
        faces = torch.tensor(
            [
                [0, 1, 2],
            ],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        clipped_faces = self.clip_faces(meshes)

        zero_t = torch.zeros(size=(1,), dtype=torch.int64, device=device)
        self.assertClose(
            clipped_faces.face_verts, torch.empty(device=device, size=(0, 3, 3))
        )
        self.assertClose(clipped_faces.mesh_to_face_first_idx, zero_t)
        self.assertClose(clipped_faces.num_faces_per_mesh, zero_t)
        self.assertClose(
            clipped_faces.faces_clipped_to_unclipped_idx,
            torch.empty(device=device, dtype=torch.int64, size=(0,)),
        )
        self.assertIsNone(clipped_faces.faces_clipped_to_conversion_idx)
        self.assertIsNone(clipped_faces.clipped_faces_neighbor_idx)
        self.assertIsNone(clipped_faces.barycentric_conversion)

    def test_case_3(self):
        """
        Case 3 triangles have exactly two vertices behind the clipping plane (z=0) so are
        clipped into a smaller triangle.

        Test with a single triangle parallel to the z axis which intersects with
        the image plane.
        """

        device = "cuda:0"
        verts = torch.tensor(
            [[-1.0, 0.0, -1.0], [0.0, 0.0, 1.0], [1.0, 0.0, -1.0]],
            dtype=torch.float32,
            device=device,
        )
        faces = torch.tensor(
            [
                [0, 1, 2],
            ],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        clipped_faces = self.clip_faces(meshes)

        zero_t = torch.zeros(size=(1,), dtype=torch.int64, device=device)
        clipped_face_verts = torch.tensor(
            [
                [
                    [0.4950, 0.0000, 0.0100],
                    [-0.4950, 0.0000, 0.0100],
                    [0.0000, 0.0000, 1.0000],
                ]
            ],
            device=device,
            dtype=torch.float32,
        )

        # barycentric_conversion[i, :, k] stores the barycentric weights
        # in terms of the world coordinates of the original
        # (big) triangle for the kth vertex in the clipped (small) triangle.
        barycentric_conversion = torch.tensor(
            [
                [
                    [0.0000, 0.4950, 0.0000],
                    [0.5050, 0.5050, 1.0000],
                    [0.4950, 0.0000, 0.0000],
                ]
            ],
            device=device,
            dtype=torch.float32,
        )

        self.assertClose(clipped_faces.face_verts, clipped_face_verts)
        self.assertEqual(clipped_faces.mesh_to_face_first_idx.item(), 0)
        self.assertEqual(clipped_faces.num_faces_per_mesh.item(), 1)
        self.assertClose(clipped_faces.faces_clipped_to_unclipped_idx, zero_t)
        self.assertClose(clipped_faces.faces_clipped_to_conversion_idx, zero_t)
        self.assertClose(
            clipped_faces.clipped_faces_neighbor_idx,
            zero_t - 1,  # default is -1
        )
        self.assertClose(clipped_faces.barycentric_conversion, barycentric_conversion)

    def test_case_4(self):
        """
        Case 4 triangles have exactly 1 vertex behind the clipping plane (z=0) so
        are clipped into a smaller quadrilateral and then divided into two triangles.

        Test with a single triangle parallel to the z axis which intersects with
        the image plane.
        """

        device = "cuda:0"
        verts = torch.tensor(
            [[0.0, 0.0, -1.0], [-1.0, 0.0, 1.0], [1.0, 0.0, 1.0]],
            dtype=torch.float32,
            device=device,
        )
        faces = torch.tensor(
            [
                [0, 1, 2],
            ],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        clipped_faces = self.clip_faces(meshes)

        clipped_face_verts = torch.tensor(
            [
                # t1
                [
                    [-0.5050, 0.0000, 0.0100],
                    [-1.0000, 0.0000, 1.0000],
                    [0.5050, 0.0000, 0.0100],
                ],
                # t2
                [
                    [0.5050, 0.0000, 0.0100],
                    [-1.0000, 0.0000, 1.0000],
                    [1.0000, 0.0000, 1.0000],
                ],
            ],
            device=device,
            dtype=torch.float32,
        )

        barycentric_conversion = torch.tensor(
            [
                [
                    [0.4950, 0.0000, 0.4950],
                    [0.5050, 1.0000, 0.0000],
                    [0.0000, 0.0000, 0.5050],
                ],
                [
                    [0.4950, 0.0000, 0.0000],
                    [0.0000, 1.0000, 0.0000],
                    [0.5050, 0.0000, 1.0000],
                ],
            ],
            device=device,
            dtype=torch.float32,
        )

        self.assertClose(clipped_faces.face_verts, clipped_face_verts)
        self.assertEqual(clipped_faces.mesh_to_face_first_idx.item(), 0)
        self.assertEqual(
            clipped_faces.num_faces_per_mesh.item(), 2
        )  # now two faces instead of 1
        self.assertClose(
            clipped_faces.faces_clipped_to_unclipped_idx,
            torch.tensor([0, 0], device=device, dtype=torch.int64),
        )
        # Neighboring face for each of the sub triangles e.g. for t1, neighbor is t2,
        # and for t2, neighbor is t1
        self.assertClose(
            clipped_faces.clipped_faces_neighbor_idx,
            torch.tensor([1, 0], device=device, dtype=torch.int64),
        )
        # barycentric_conversion is of shape (F_clipped)
        self.assertEqual(clipped_faces.barycentric_conversion.shape[0], 2)
        self.assertClose(clipped_faces.barycentric_conversion, barycentric_conversion)
        # Index into barycentric_conversion for each clipped face.
        self.assertClose(
            clipped_faces.faces_clipped_to_conversion_idx,
            torch.tensor([0, 1], device=device, dtype=torch.int64),
        )

    def test_mixture_of_cases(self):
        """
        Test with two meshes composed of different cases to check all the
        indexing is correct.
        Case 4 faces are subdivided into two faces which are referred
        to as t1 and t2.
        """
        device = "cuda:0"
        # fmt: off
        verts = [
            torch.tensor(
                [
                    [-1.0,  0.0, -1.0],  # noqa: E241, E201
                    [ 0.0,  1.0, -1.0],  # noqa: E241, E201
                    [ 1.0,  0.0, -1.0],  # noqa: E241, E201
                    [ 0.0, -1.0, -1.0],  # noqa: E241, E201
                    [-1.0,  0.5,  0.5],  # noqa: E241, E201
                    [ 1.0,  1.0,  1.0],  # noqa: E241, E201
                    [ 0.0, -1.0,  1.0],  # noqa: E241, E201
                    [-1.0,  0.5, -0.5],  # noqa: E241, E201
                    [ 1.0,  1.0, -1.0],  # noqa: E241, E201
                    [-1.0,  0.0,  1.0],  # noqa: E241, E201
                    [ 0.0,  1.0,  1.0],  # noqa: E241, E201
                    [ 1.0,  0.0,  1.0],  # noqa: E241, E201
                ],
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
                [
                    [ 0.0, -1.0, -1.0],  # noqa: E241, E201
                    [-1.0,  0.5,  0.5],  # noqa: E241, E201
                    [ 1.0,  1.0,  1.0],  # noqa: E241, E201
                ],
                dtype=torch.float32,
                device=device
            )
        ]
        faces = [
            torch.tensor(
                [
                    [0,  1,  2],  # noqa: E241, E201  Case 2 fully clipped
                    [3,  4,  5],  # noqa: E241, E201  Case 4 clipped and subdivided
                    [5,  4,  3],  # noqa: E241, E201  Repeat of Case 4
                    [6,  7,  8],  # noqa: E241, E201  Case 3 clipped
                    [9, 10, 11],  # noqa: E241, E201  Case 1 untouched
                ],
                dtype=torch.int64,
                device=device,
            ),
            torch.tensor(
                [
                    [0,  1,  2],  # noqa: E241, E201  Case 4
                ],
                dtype=torch.int64,
                device=device,
            ),
        ]
        # fmt: on
        meshes = Meshes(verts=verts, faces=faces)

        # Clip meshes
        clipped_faces = self.clip_faces(meshes)

        # mesh 1: 4x faces (from Case 4) + 1 (from Case 3) + 1 (from Case 1)
        # mesh 2: 2x faces (from Case 4)
        self.assertEqual(clipped_faces.face_verts.shape[0], 6 + 2)

        # dummy idx type tensor to avoid having to initialize the dype/device each time
        idx = torch.empty(size=(1,), dtype=torch.int64, device=device)
        unclipped_idx = idx.new_tensor([1, 1, 2, 2, 3, 4, 5, 5])
        neighbors = idx.new_tensor([1, 0, 3, 2, -1, -1, 7, 6])
        first_idx = idx.new_tensor([0, 6])
        num_faces = idx.new_tensor([6, 2])

        self.assertClose(clipped_faces.clipped_faces_neighbor_idx, neighbors)
        self.assertClose(clipped_faces.faces_clipped_to_unclipped_idx, unclipped_idx)
        self.assertClose(clipped_faces.mesh_to_face_first_idx, first_idx)
        self.assertClose(clipped_faces.num_faces_per_mesh, num_faces)

        # faces_clipped_to_conversion_idx maps each output face to the
        # corresponding row of the barycentric_conversion matrix.
        # The barycentric_conversion matrix is composed by
        # finding the barycentric conversion weights for case 3 faces
        # case 4 (t1) faces and case 4 (t2) faces. These are then
        # concatenated. Therefore case 3 faces will be the first rows of
        # the barycentric_conversion matrix followed by t1 and then t2.
        # Case type of all faces: [4 (t1), 4 (t2), 4 (t1), 4 (t2), 3, 1, 4 (t1), 4 (t2)]
        # Based on this information we can calculate the indices into the
        # barycentric conversion matrix.
        bary_idx = idx.new_tensor([1, 4, 2, 5, 0, -1, 3, 6])
        self.assertClose(clipped_faces.faces_clipped_to_conversion_idx, bary_idx)
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

    def test_convert_clipped_to_unclipped_case_4(self):
        """
        Test with a single case 4 triangle which is clipped into
        a quadrilateral and subdivided.
        """
        device = "cuda:0"
        # fmt: off
        verts = torch.tensor(
            [
                [-1.0,  0.0, -1.0],  # noqa: E241, E201
                [ 0.0,  1.0, -1.0],  # noqa: E241, E201
                [ 1.0,  0.0, -1.0],  # noqa: E241, E201
                [ 0.0, -1.0, -1.0],  # noqa: E241, E201
                [-1.0,  0.5,  0.5],  # noqa: E241, E201
                [ 1.0,  1.0,  1.0],  # noqa: E241, E201
                [ 0.0, -1.0,  1.0],  # noqa: E241, E201
                [-1.0,  0.5, -0.5],  # noqa: E241, E201
                [ 1.0,  1.0, -1.0],  # noqa: E241, E201
                [-1.0,  0.0,  1.0],  # noqa: E241, E201
                [ 0.0,  1.0,  1.0],  # noqa: E241, E201
                [ 1.0,  0.0,  1.0],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        faces = torch.tensor(
            [
                [0,  1,  2],  # noqa: E241, E201  Case 2 fully clipped
                [3,  4,  5],  # noqa: E241, E201  Case 4 clipped and subdivided
                [5,  4,  3],  # noqa: E241, E201  Repeat of Case 4
                [6,  7,  8],  # noqa: E241, E201  Case 3 clipped
                [9, 10, 11],  # noqa: E241, E201  Case 1 untouched
            ],
            dtype=torch.int64,
            device=device,
        )
        # fmt: on
        meshes = Meshes(verts=[verts], faces=[faces])

        # Clip meshes
        clipped_faces = self.clip_faces(meshes)

        # 4x faces (from Case 4) + 1 (from Case 3) + 1 (from Case 1)
        self.assertEqual(clipped_faces.face_verts.shape[0], 6)

        image_size = (10, 10)
        blur_radius = 0.05
        faces_per_pixel = 2
        perspective_correct = True
        bin_size = 0
        max_faces_per_bin = 20
        clip_barycentric_coords = False
        cull_backfaces = False

        # Rasterize clipped mesh
        pix_to_face, zbuf, barycentric_coords, dists = _RasterizeFaceVerts.apply(
            clipped_faces.face_verts,
            clipped_faces.mesh_to_face_first_idx,
            clipped_faces.num_faces_per_mesh,
            clipped_faces.clipped_faces_neighbor_idx,
            image_size,
            blur_radius,
            faces_per_pixel,
            bin_size,
            max_faces_per_bin,
            perspective_correct,
            clip_barycentric_coords,
            cull_backfaces,
        )

        # Convert outputs so they are in terms of the unclipped mesh.
        outputs = convert_clipped_rasterization_to_original_faces(
            pix_to_face,
            barycentric_coords,
            clipped_faces,
        )
        pix_to_face_unclipped, barycentric_coords_unclipped = outputs

        # In the clipped mesh there are more faces than in the unclipped mesh
        self.assertTrue(pix_to_face.max() > pix_to_face_unclipped.max())
        # Unclipped pix_to_face indices must be in the limit of the number
        # of faces in the unclipped mesh.
        self.assertTrue(pix_to_face_unclipped.max() < faces.shape[0])

    def test_case_4_no_duplicates(self):
        """
        In the case of an simple mesh with one face that is cut by the image
        plane into a quadrilateral, there shouldn't be duplicates indices of
        the face in the pix_to_face output of rasterization.
        """
        for (device, bin_size) in [("cpu", 0), ("cuda:0", 0), ("cuda:0", None)]:
            verts = torch.tensor(
                [[0.0, -10.0, 1.0], [-1.0, 2.0, -2.0], [1.0, 5.0, -10.0]],
                dtype=torch.float32,
                device=device,
            )
            faces = torch.tensor(
                [
                    [0, 1, 2],
                ],
                dtype=torch.int64,
                device=device,
            )
            meshes = Meshes(verts=[verts], faces=[faces])
            k = 3
            settings = RasterizationSettings(
                image_size=10,
                blur_radius=0.05,
                faces_per_pixel=k,
                z_clip_value=1e-2,
                perspective_correct=True,
                cull_to_frustum=True,
                bin_size=bin_size,
            )

            # The camera is positioned so that the image plane cuts
            # the mesh face into a quadrilateral.
            R, T = look_at_view_transform(0.2, 0, 0)
            cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=90)
            rasterizer = MeshRasterizer(raster_settings=settings, cameras=cameras)
            fragments = rasterizer(meshes)

            p2f = fragments.pix_to_face.reshape(-1, k)
            unique_vals, idx_counts = p2f.unique(dim=0, return_counts=True)
            # There is only one face in this mesh so if it hits a pixel
            # it can only be at position k = 0
            # For any pixel, the values [0, 0, 1] for the top K faces cannot be possible
            double_hit = torch.tensor([0, 0, -1], device=device)
            check_double_hit = any(torch.allclose(i, double_hit) for i in unique_vals)
            self.assertFalse(check_double_hit)
Nikhila Ravi's avatar
Nikhila Ravi committed
658
659
660

    def test_mesh_outside_frustrum(self):
        """
661
662
        Test cases:
        1. Where the mesh is completely outside the view
Nikhila Ravi's avatar
Nikhila Ravi committed
663
        frustrum so all faces are culled and z_clip_value = None.
664
665
666
        2. Where the part of the mesh is in the view frustrum but
        the z_clip value = 5.0 so all the visible faces are behind
        the clip plane so are culled instead of clipped.
Nikhila Ravi's avatar
Nikhila Ravi committed
667
668
        """
        device = "cuda:0"
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
        mesh1 = torus(20.0, 85.0, 32, 16, device=device)
        mesh2 = torus(2.0, 3.0, 32, 16, device=device)
        for (mesh, z_clip) in [(mesh1, None), (mesh2, 5.0)]:
            tex = TexturesVertex(verts_features=torch.rand_like(mesh.verts_padded()))
            mesh.textures = tex
            raster_settings = RasterizationSettings(
                image_size=512, cull_to_frustum=True, z_clip_value=z_clip
            )
            R, T = look_at_view_transform(3.0, 0.0, 0.0)
            cameras = PerspectiveCameras(device=device, R=R, T=T)
            renderer = MeshRenderer(
                rasterizer=MeshRasterizer(
                    cameras=cameras, raster_settings=raster_settings
                ),
                shader=SoftPhongShader(cameras=cameras, device=device),
            )
            images = renderer(mesh)
            # The image should be white.
            self.assertClose(images[0, ..., :3], torch.ones_like(images[0, ..., :3]))