bm_knn.py 4.07 KB
Newer Older
Justin Johnson's avatar
Justin Johnson committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

from itertools import product

import torch
from fvcore.common.benchmark import benchmark

from pytorch3d import _C
from pytorch3d.ops.knn import _knn_points_idx_naive


def bm_knn() -> None:
    """ Entry point for the benchmark """
    benchmark_knn_cpu()
    benchmark_knn_cuda_vs_naive()
    benchmark_knn_cuda_versions()


def benchmark_knn_cuda_versions() -> None:
    # Compare our different KNN implementations,
    # and also compare against our existing 1-NN
    Ns = [1, 2]
    Ps = [4096, 16384]
    Ds = [3]
    Ks = [1, 4, 16, 64]
    versions = [0, 1, 2, 3]
    knn_kwargs, nn_kwargs = [], []
    for N, P, D, K, version in product(Ns, Ps, Ds, Ks, versions):
        if version == 2 and K > 32:
            continue
        if version == 3 and K > 4:
            continue
        knn_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K, 'v': version})
    for N, P, D in product(Ns, Ps, Ds):
        nn_kwargs.append({'N': N, 'D': D, 'P': P})
    benchmark(
        knn_cuda_with_init,
        'KNN_CUDA_VERSIONS',
        knn_kwargs,
        warmup_iters=1,
    )
    benchmark(
        nn_cuda_with_init,
        'NN_CUDA',
        nn_kwargs,
        warmup_iters=1,
    )


def benchmark_knn_cuda_vs_naive() -> None:
    # Compare against naive pytorch version of KNN
    Ns = [1, 2, 4]
    Ps = [1024, 4096, 16384, 65536]
    Ds = [3]
    Ks = [1, 2, 4, 8, 16]
    knn_kwargs, naive_kwargs = [], []
    for N, P, D, K in product(Ns, Ps, Ds, Ks):
        knn_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K})
        if P <= 4096:
            naive_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K})
    benchmark(
        knn_python_cuda_with_init,
        'KNN_CUDA_PYTHON',
        naive_kwargs,
        warmup_iters=1,
    )
    benchmark(
        knn_cuda_with_init,
        'KNN_CUDA',
        knn_kwargs,
        warmup_iters=1,
    )


def benchmark_knn_cpu() -> None:
    Ns = [1, 2]
    Ps = [256, 512]
    Ds = [3]
    Ks = [1, 2, 4]
    knn_kwargs, nn_kwargs = [], []
    for N, P, D, K in product(Ns, Ps, Ds, Ks):
        knn_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K})
    for N, P, D in product(Ns, Ps, Ds):
        nn_kwargs.append({'N': N, 'D': D, 'P': P})
    benchmark(
        knn_python_cpu_with_init,
        'KNN_CPU_PYTHON',
        knn_kwargs,
        warmup_iters=1,
    )
    benchmark(
        knn_cpu_with_init,
        'KNN_CPU_CPP',
        knn_kwargs,
        warmup_iters=1,
    )
    benchmark(
        nn_cpu_with_init,
        'NN_CPU_CPP',
        nn_kwargs,
        warmup_iters=1,
    )


def knn_cuda_with_init(N, D, P, K, v=-1):
    device = torch.device('cuda:0')
    x = torch.randn(N, P, D, device=device)
    y = torch.randn(N, P, D, device=device)
    torch.cuda.synchronize()

    def knn():
        _C.knn_points_idx(x, y, K, v)
        torch.cuda.synchronize()

    return knn


def knn_cpu_with_init(N, D, P, K):
    device = torch.device('cpu')
    x = torch.randn(N, P, D, device=device)
    y = torch.randn(N, P, D, device=device)

    def knn():
        _C.knn_points_idx(x, y, K, 0)

    return knn


def knn_python_cuda_with_init(N, D, P, K):
    device = torch.device('cuda')
    x = torch.randn(N, P, D, device=device)
    y = torch.randn(N, P, D, device=device)
    torch.cuda.synchronize()

    def knn():
        _knn_points_idx_naive(x, y, K)
        torch.cuda.synchronize()

    return knn


def knn_python_cpu_with_init(N, D, P, K):
    device = torch.device('cpu')
    x = torch.randn(N, P, D, device=device)
    y = torch.randn(N, P, D, device=device)

    def knn():
        _knn_points_idx_naive(x, y, K)

    return knn


def nn_cuda_with_init(N, D, P):
    device = torch.device('cuda')
    x = torch.randn(N, P, D, device=device)
    y = torch.randn(N, P, D, device=device)
    torch.cuda.synchronize()

    def knn():
        _C.nn_points_idx(x, y)
        torch.cuda.synchronize()

    return knn


def nn_cpu_with_init(N, D, P):
    device = torch.device('cpu')
    x = torch.randn(N, P, D, device=device)
    y = torch.randn(N, P, D, device=device)

    def knn():
        _C.nn_points_idx(x, y)

    return knn