test_forward_pass.py 3.73 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import torch
from pytorch3d.implicitron.models.base import GenericModel
from pytorch3d.implicitron.models.renderer.base import EvaluationMode
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
13
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
14
15
16
17


class TestGenericModel(unittest.TestCase):
    def test_gm(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
        # Simple test of a forward and backward pass of the default GenericModel.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        device = torch.device("cuda:1")
        expand_args_fields(GenericModel)
        model = GenericModel()
        model.to(device)

        n_train_cameras = 2
        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

        # TODO: make these default to None?
        defaulted_args = {
            "fg_probability": None,
            "depth_map": None,
            "mask_crop": None,
            "sequence_name": None,
        }

        with self.assertWarnsRegex(UserWarning, "No main objective found"):
            model(
                camera=cameras,
                evaluation_mode=EvaluationMode.TRAINING,
                **defaulted_args,
                image_rgb=None,
            )
        target_image_rgb = torch.rand(
            (n_train_cameras, 3, model.render_image_height, model.render_image_width),
            device=device,
        )
        train_preds = model(
            camera=cameras,
            evaluation_mode=EvaluationMode.TRAINING,
            image_rgb=target_image_rgb,
            **defaulted_args,
        )
        self.assertGreater(train_preds["objective"].item(), 0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
54
        train_preds["objective"].backward()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68

        model.eval()
        with torch.no_grad():
            # TODO: perhaps this warning should be skipped in eval mode?
            with self.assertWarnsRegex(UserWarning, "No main objective found"):
                eval_preds = model(
                    camera=cameras[0],
                    **defaulted_args,
                    image_rgb=None,
                )
        self.assertEqual(
            eval_preds["images_render"].shape,
            (1, 3, model.render_image_height, model.render_image_width),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def test_idr(self):
        # Forward pass of GenericModel with IDR.
        device = torch.device("cuda:1")
        args = get_default_args(GenericModel)
        args.renderer_class_type = "SignedDistanceFunctionRenderer"
        args.implicit_function_class_type = "IdrFeatureField"
        args.implicit_function_IdrFeatureField_args.n_harmonic_functions_xyz = 6

        model = GenericModel(**args)
        model.to(device)

        n_train_cameras = 2
        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

        defaulted_args = {
            "depth_map": None,
            "mask_crop": None,
            "sequence_name": None,
        }

        target_image_rgb = torch.rand(
            (n_train_cameras, 3, model.render_image_height, model.render_image_width),
            device=device,
        )
        fg_probability = torch.rand(
            (n_train_cameras, 1, model.render_image_height, model.render_image_width),
            device=device,
        )
        train_preds = model(
            camera=cameras,
            evaluation_mode=EvaluationMode.TRAINING,
            image_rgb=target_image_rgb,
            fg_probability=fg_probability,
            **defaulted_args,
        )
        self.assertGreater(train_preds["objective"].item(), 0)