test_mesh_normal_consistency.py 8.38 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
facebook-github-bot's avatar
facebook-github-bot committed
2
3
4
5


import unittest

6
import torch
facebook-github-bot's avatar
facebook-github-bot committed
7
8
9
10
11
12
from pytorch3d.loss.mesh_normal_consistency import mesh_normal_consistency
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere


class TestMeshNormalConsistency(unittest.TestCase):
13
14
15
    def setUp(self) -> None:
        torch.manual_seed(42)

facebook-github-bot's avatar
facebook-github-bot committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    @staticmethod
    def init_faces(num_verts: int = 1000):
        faces = []
        for f0 in range(num_verts):
            for f1 in range(f0 + 1, num_verts):
                f2 = torch.arange(f1 + 1, num_verts)
                n = f2.shape[0]
                if n == 0:
                    continue
                faces.append(
                    torch.stack(
                        [
                            torch.full((n,), f0, dtype=torch.int64),
                            torch.full((n,), f1, dtype=torch.int64),
                            f2,
                        ],
                        dim=1,
                    )
                )
        faces = torch.cat(faces, 0)
        return faces

    @staticmethod
39
    def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
facebook-github-bot's avatar
facebook-github-bot committed
40
41
42
43
44
45
        device = torch.device("cuda:0")
        valid_faces = TestMeshNormalConsistency.init_faces(num_verts).to(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = (
46
                torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
facebook-github-bot's avatar
facebook-github-bot committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
                - 1.0
            )  # verts in the space of [-1, 1]
            """
            faces = torch.stack(
                [
                    torch.randperm(num_verts, device=device)[:3]
                    for _ in range(num_faces)
                ],
                dim=0,
            )
            # avoids duplicate vertices in a face
            """
            idx = torch.randperm(valid_faces.shape[0], device=device)[
                : min(valid_faces.shape[0], num_faces)
            ]
            faces = valid_faces[idx]
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        return meshes

    @staticmethod
    def mesh_normal_consistency_naive(meshes):
        """
        Naive iterative implementation of mesh normal consistency.
        """
        N = len(meshes)
        verts_packed = meshes.verts_packed()
        faces_packed = meshes.faces_packed()
        edges_packed = meshes.edges_packed()
        face_to_edge = meshes.faces_packed_to_edges_packed()
        edges_packed_to_mesh_idx = meshes.edges_packed_to_mesh_idx()

        E = edges_packed.shape[0]
        loss = []
        mesh_idx = []

        for e in range(E):
            face_idx = face_to_edge.eq(e).any(1).nonzero()  # indexed to faces
            v0 = verts_packed[edges_packed[e, 0]]
            v1 = verts_packed[edges_packed[e, 1]]
            normals = []
            for f in face_idx:
                v2 = -1
                for j in range(3):
                    if (
                        faces_packed[f, j] != edges_packed[e, 0]
                        and faces_packed[f, j] != edges_packed[e, 1]
                    ):
                        v2 = faces_packed[f, j]
                assert v2 > -1
                v2 = verts_packed[v2]
                normals.append((v1 - v0).view(-1).cross((v2 - v0).view(-1)))
            for i in range(len(normals) - 1):
101
102
103
104
105
106
107
                for j in range(i + 1, len(normals)):
                    mesh_idx.append(edges_packed_to_mesh_idx[e])
                    loss.append(
                        (
                            1
                            - torch.cosine_similarity(
                                normals[i].view(1, 3), -normals[j].view(1, 3)
facebook-github-bot's avatar
facebook-github-bot committed
108
109
                            )
                        )
110
                    )
facebook-github-bot's avatar
facebook-github-bot committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

        mesh_idx = torch.tensor(mesh_idx, device=meshes.device)
        num = mesh_idx.bincount(minlength=N)
        weights = 1.0 / num[mesh_idx].float()

        loss = torch.cat(loss) * weights
        return loss.sum() / N

    def test_mesh_normal_consistency_simple(self):
        r"""
        Mesh 1:
                        v3
                        /\
                       /  \
                   e4 / f1 \ e3
                     /      \
                 v2 /___e2___\ v1
                    \        /
                     \      /
                 e1   \ f0 / e0
                       \  /
                        \/
                        v0
        """
        device = torch.device("cuda:0")
        # mesh1 shown above
        verts1 = torch.rand((4, 3), dtype=torch.float32, device=device)
138
        faces1 = torch.tensor([[0, 1, 2], [2, 1, 3]], dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

        # mesh2 is a cuboid with 8 verts, 12 faces and 18 edges
        verts2 = torch.tensor(
            [
                [0, 0, 0],
                [0, 0, 1],
                [0, 1, 0],
                [0, 1, 1],
                [1, 0, 0],
                [1, 0, 1],
                [1, 1, 0],
                [1, 1, 1],
            ],
            dtype=torch.float32,
            device=device,
        )
        faces2 = torch.tensor(
            [
                [0, 1, 2],
                [1, 3, 2],  # left face: 0, 1
                [2, 3, 6],
                [3, 7, 6],  # bottom face: 2, 3
                [0, 2, 6],
                [0, 6, 4],  # front face: 4, 5
                [0, 5, 1],
                [0, 4, 5],  # up face: 6, 7
                [6, 7, 5],
                [6, 5, 4],  # right face: 8, 9
                [1, 7, 3],
                [1, 5, 7],  # back face: 10, 11
            ],
            dtype=torch.int64,
            device=device,
        )

        # mesh3 is like mesh1 but with another face added to e2
        verts3 = torch.rand((5, 3), dtype=torch.float32, device=device)
        faces3 = torch.tensor(
            [[0, 1, 2], [2, 1, 3], [2, 1, 4]], dtype=torch.int64, device=device
        )

180
        meshes = Meshes(verts=[verts1, verts2, verts3], faces=[faces1, faces2, faces3])
facebook-github-bot's avatar
facebook-github-bot committed
181
182
183
184

        # mesh1: normal consistency computation
        n0 = (verts1[1] - verts1[2]).cross(verts1[3] - verts1[2])
        n1 = (verts1[1] - verts1[2]).cross(verts1[0] - verts1[2])
Nikhila Ravi's avatar
Nikhila Ravi committed
185
        loss1 = 1.0 - torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))
facebook-github-bot's avatar
facebook-github-bot committed
186
187
188
189
190
191
192
193
194
195
196
197

        # mesh2: normal consistency computation
        # In the cube mesh, 6 edges are shared with coplanar faces (loss=0),
        # 12 edges are shared by perpendicular faces (loss=1)
        loss2 = 12.0 / 18

        # mesh3
        n0 = (verts3[1] - verts3[2]).cross(verts3[3] - verts3[2])
        n1 = (verts3[1] - verts3[2]).cross(verts3[0] - verts3[2])
        n2 = (verts3[1] - verts3[2]).cross(verts3[4] - verts3[2])
        loss3 = (
            3.0
Nikhila Ravi's avatar
Nikhila Ravi committed
198
199
200
            - torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))
            - torch.cosine_similarity(n0.view(1, 3), -(n2.view(1, 3)))
            - torch.cosine_similarity(n1.view(1, 3), -(n2.view(1, 3)))
facebook-github-bot's avatar
facebook-github-bot committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        )
        loss3 /= 3.0

        loss = (loss1 + loss2 + loss3) / 3.0

        out = mesh_normal_consistency(meshes)

        self.assertTrue(torch.allclose(out, loss))

    def test_mesh_normal_consistency(self):
        """
        Test Mesh Normal Consistency for random meshes.
        """
        meshes = TestMeshNormalConsistency.init_meshes(5, 100, 300)

        out1 = mesh_normal_consistency(meshes)
        out2 = TestMeshNormalConsistency.mesh_normal_consistency_naive(meshes)

        self.assertTrue(torch.allclose(out1, out2))

221
222
223
224
225
    def test_no_intersection(self):
        """
        Test Mesh Normal Consistency for a mesh known to have no
        intersecting faces.
        """
226
        verts = torch.rand(1, 6, 3)
227
228
229
230
231
        faces = torch.arange(6).reshape(1, 2, 3)
        meshes = Meshes(verts=verts, faces=faces)
        out = mesh_normal_consistency(meshes)
        self.assertEqual(out.item(), 0)

facebook-github-bot's avatar
facebook-github-bot committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    @staticmethod
    def mesh_normal_consistency_with_ico(
        num_meshes: int, level: int = 3, device: str = "cpu"
    ):
        device = torch.device(device)
        mesh = ico_sphere(level, device)
        verts, faces = mesh.get_mesh_verts_faces(0)
        verts_list = [verts.clone() for _ in range(num_meshes)]
        faces_list = [faces.clone() for _ in range(num_meshes)]
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def loss():
            mesh_normal_consistency(meshes)
            torch.cuda.synchronize()

        return loss