test_cameras.py 26.1 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


# Some of the code below is adapted from Soft Rasterizer (SoftRas)
#
# Copyright (c) 2017 Hiroharu Kato
# Copyright (c) 2018 Nikos Kolotouros
# Copyright (c) 2019 Shichen Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import math
import numpy as np
import unittest
import torch

from pytorch3d.renderer.cameras import (
    OpenGLOrthographicCameras,
    OpenGLPerspectiveCameras,
    SfMOrthographicCameras,
    SfMPerspectiveCameras,
    camera_position_from_spherical_angles,
    get_world_to_view_transform,
    look_at_rotation,
)
from pytorch3d.transforms import Transform3d
from pytorch3d.transforms.so3 import so3_exponential_map

from common_testing import TestCaseMixin


# Naive function adapted from SoftRasterizer for test purposes.
def perspective_project_naive(points, fov=60.0):
    """
    Compute perspective projection from a given viewing angle.
    Args:
        points: (N, V, 3) representing the padded points.
        viewing angle: degrees
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization)
    """
    device = points.device
    halfFov = torch.tensor(
        (fov / 2) / 180 * np.pi, dtype=torch.float32, device=device
    )
    scale = torch.tan(halfFov[None])
    scale = scale[:, None]
    z = points[:, :, 2]
    x = points[:, :, 0] / z / scale
    y = points[:, :, 1] / z / scale
    points = torch.stack((x, y, z), dim=2)
    return points


def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
    """
    Compute perspective projection using focal length and principal point.

    Args:
        points: (N, V, 3) representing the padded points.
        fx: world units
        fy: world units
        p0x: pixels
        p0y: pixels
    Returns:
        (N, V, 3) tensor of projected points.
    """
    z = points[:, :, 2]
    x = (points[:, :, 0] * fx + p0x) / z
    y = (points[:, :, 1] * fy + p0y) / z
    points = torch.stack((x, y, 1.0 / z), dim=2)
    return points


# Naive function adapted from SoftRasterizer for test purposes.
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
    """
    Compute orthographic projection from a given angle
    Args:
        points: (N, V, 3) representing the padded points.
        scaled: (N, 3) scaling factors for each of xyz directions
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization).
    """
    if not torch.is_tensor(scale_xyz):
        scale_xyz = torch.tensor(scale_xyz)
    scale_xyz = scale_xyz.view(-1, 3)
    z = points[:, :, 2]
    x = points[:, :, 0] * scale_xyz[:, 0]
    y = points[:, :, 1] * scale_xyz[:, 1]
    points = torch.stack((x, y, z), dim=2)
    return points


class TestCameraHelpers(unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    def test_camera_position_from_angles_python_scalar(self):
        dist = 2.7
        elev = 90.0
        azim = 0.0
        expected_position = torch.tensor(
            [0.0, 2.7, 0.0], dtype=torch.float32
        ).view(1, 3)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))

    def test_camera_position_from_angles_python_scalar_radians(self):
        dist = 2.7
        elev = math.pi / 2
        azim = 0.0
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
        expected_position = expected_position.view(1, 3)
        position = camera_position_from_spherical_angles(
            dist, elev, azim, degrees=False
        )
        self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))

    def test_camera_position_from_angles_torch_scalars(self):
        dist = torch.tensor(2.7)
        elev = torch.tensor(0.0)
        azim = torch.tensor(90.0)
        expected_position = torch.tensor(
            [2.7, 0.0, 0.0], dtype=torch.float32
        ).view(1, 3)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))

    def test_camera_position_from_angles_mixed_scalars(self):
        dist = 2.7
        elev = torch.tensor(0.0)
        azim = 90.0
        expected_position = torch.tensor(
            [2.7, 0.0, 0.0], dtype=torch.float32
        ).view(1, 3)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))

    def test_camera_position_from_angles_torch_scalar_grads(self):
        dist = torch.tensor(2.7, requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = torch.tensor(45.0)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
176
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
177
178
179
180
        )
        grad_elev = (
            -torch.sin(elev) * torch.sin(azim)
            + torch.cos(elev)
181
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        )
        grad_elev = dist * (math.pi / 180.0) * grad_elev
        self.assertTrue(torch.allclose(elev_grad, grad_elev))
        self.assertTrue(torch.allclose(dist_grad, grad_dist))

    def test_camera_position_from_angles_vectors(self):
        dist = torch.tensor([2.0, 2.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0, 0.0])
        expected_position = torch.tensor(
            [[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))

    def test_camera_position_from_angles_vectors_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0])
        azim = torch.tensor([90.0])
        expected_position = torch.tensor(
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]],
            dtype=torch.float32,
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertTrue(torch.allclose(position, expected_position, atol=3e-7))

    def test_camera_position_from_angles_vectors_mixed_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = 0.0
        azim = torch.tensor(90.0)
        expected_position = torch.tensor(
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]],
            dtype=torch.float32,
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertTrue(torch.allclose(position, expected_position, atol=3e-7))

    def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
        dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = 45.0
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        azim = torch.tensor(azim)
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
235
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
236
237
238
239
        )
        grad_elev = (
            -torch.sin(elev) * torch.sin(azim)
            + torch.cos(elev)
240
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        )
        grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
        self.assertTrue(torch.allclose(elev_grad, grad_elev))
        self.assertTrue(torch.allclose(dist_grad, grad_dist))

    def test_camera_position_from_angles_vectors_bad_broadcast(self):
        # Batch dim for broadcast must be N or 1
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0])
        with self.assertRaises(ValueError):
            camera_position_from_spherical_angles(dist, elev, azim)

    def test_look_at_rotation_python_list(self):
        camera_position = [[0.0, 0.0, -1.0]]  # camera pointing along negative z
        rot_mat = look_at_rotation(camera_position)
        self.assertTrue(torch.allclose(rot_mat, torch.eye(3)[None], atol=2e-7))

    def test_look_at_rotation_input_fail(self):
        camera_position = [-1.0]  # expected to have xyz positions
        with self.assertRaises(ValueError):
            look_at_rotation(camera_position)

    def test_look_at_rotation_list_broadcast(self):
        # fmt: off
        camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
        self.assertTrue(torch.allclose(rot_mats, rot_mats_expected, atol=2e-7))

    def test_look_at_rotation_tensor_broadcast(self):
        # fmt: off
        camera_positions = torch.tensor([
            [0.0, 0.0, -1.0],
            [0.0, 0.0,  1.0]   # noqa: E241, E201
        ], dtype=torch.float32)
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
        self.assertTrue(torch.allclose(rot_mats, rot_mats_expected, atol=2e-7))

    def test_look_at_rotation_tensor_grad(self):
        camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
        rot_mat = look_at_rotation(camera_position)
        rot_mat.sum().backward()
        self.assertTrue(hasattr(camera_position, "grad"))
        self.assertTrue(
            torch.allclose(
                camera_position.grad,
                torch.zeros_like(camera_position),
                atol=2e-7,
            )
        )

    def test_view_transform(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        self.assertTrue(isinstance(RT, Transform3d))

    def test_view_transform_class_method(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
        ):
            cam = cam_type(R=R, T=T)
            RT_class = cam.get_world_to_view_transform()
            self.assertTrue(
                torch.allclose(RT.get_matrix(), RT_class.get_matrix())
            )

        self.assertTrue(isinstance(RT, Transform3d))

    def test_get_camera_center(self, batch_size=10):
        T = torch.randn(batch_size, 3)
        R = so3_exponential_map(torch.randn(batch_size, 3) * 3.0)
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
        ):
            cam = cam_type(R=R, T=T)
            C = cam.get_camera_center()
            C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
            self.assertTrue(torch.allclose(C, C_, atol=1e-05))


class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
    def test_perspective(self):
        far = 10.0
        near = 1.0
        cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=60.0)
        P = cameras.get_projection_transform()
        # vertices are at the far clipping plane so z gets mapped to 1.
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(far * v1[..., 2], v2[..., 2]))
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

        # vertices are at the near clipping plane so z gets mapped to 0.0.
        vertices[..., 2] = near
        projected_verts = torch.tensor(
            [np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
        )
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

    def test_perspective_kwargs(self):
        cameras = OpenGLPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
        # Override defaults by passing in values to get_projection_transform
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

    def test_perspective_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0], dtype=torch.float32)
        near = 1.0
        fov = torch.tensor(60.0)
        cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=fov)
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        z1 = 1.0  # vertices at far clipping plane so z = 1.0
        z2 = (20.0 / (20.0 - 1.0) * 10.0 + -(20.0) / (20.0 - 1.0)) / 10.0
        projected_verts = torch.tensor(
            [
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
            ],
            dtype=torch.float32,
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

    def test_perspective_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        fov = torch.tensor(60.0, requires_grad=True)
        cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=fov)
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch).squeeze()
        v1.sum().backward()
        self.assertTrue(hasattr(fov, "grad"))
        fov_grad = fov.grad.clone()
        half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
        grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
        grad_fov = (math.pi / 180.0) * grad_cotan
        grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
        self.assertTrue(torch.allclose(fov_grad, grad_fov))

    def test_camera_class_init(self):
        device = torch.device("cuda:0")
        cam = OpenGLPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))

        # Check broadcasting
        self.assertTrue(cam.znear.shape == (2,))
        self.assertTrue(cam.zfar.shape == (2,))

        # update znear element 1
        cam[1].znear = 20.0
        self.assertTrue(cam.znear[1] == 20.0)

        # Get item and get value
        c0 = cam[0]
        self.assertTrue(c0.zfar == 100.0)

        # Test to
        new_cam = cam.to(device=device)
        self.assertTrue(new_cam.device == device)

    def test_get_full_transform(self):
        cam = OpenGLPerspectiveCameras()
        T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
        R = look_at_rotation(T)
        P = cam.get_full_projection_transform(R=R, T=T)
        self.assertTrue(isinstance(P, Transform3d))
        self.assertTrue(torch.allclose(cam.R, R))
        self.assertTrue(torch.allclose(cam.T, T))

    def test_transform_points(self):
        # Check transform_points methods works with default settings for
        # RT and P
        far = 10.0
        cam = OpenGLPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
        points = torch.tensor([1, 2, far], dtype=torch.float32)
        points = points.view(1, 1, 3).expand(5, 10, -1)
        projected_points = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
        new_points = cam.transform_points(points)
        self.assertTrue(torch.allclose(new_points, projected_points))


class TestOpenGLOrthographicProjection(TestCaseMixin, unittest.TestCase):
    def test_orthographic(self):
        far = 10.0
        near = 1.0
        cameras = OpenGLOrthographicCameras(znear=near, zfar=far)
        P = cameras.get_projection_transform()

        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

        vertices[..., 2] = near
        projected_verts[2] = 0.0
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

    def test_orthographic_scaled(self):
        vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
        vertices = vertices[None, None, :]
        scale = torch.tensor([[2.0, 0.5, 20]])
        # applying the scale puts the z coordinate at the far clipping plane
        # so the z is mapped to 1.0
        projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
        cameras = OpenGLOrthographicCameras(
            znear=1.0, zfar=10.0, scale_xyz=scale
        )
        P = cameras.get_projection_transform()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices, scale)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1, projected_verts))

    def test_orthographic_kwargs(self):
        cameras = OpenGLOrthographicCameras(znear=5.0, zfar=100.0)
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

    def test_orthographic_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0])
        near = 1.0
        cameras = OpenGLOrthographicCameras(znear=near, zfar=far)
        P = cameras.get_projection_transform()

        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
        z2 = 1.0 / (20.0 - 1.0) * 10.0 + -(1.0) / (20.0 - 1.0)
        projected_verts = torch.tensor(
            [[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))

    def test_orthographic_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
        cameras = OpenGLOrthographicCameras(
            znear=near, zfar=far, scale_xyz=scale
        )
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch)
        v1.sum().backward()
        self.assertTrue(hasattr(scale, "grad"))
        scale_grad = scale.grad.clone()
        grad_scale = torch.tensor(
            [
                [
                    vertices[0] * P._matrix[:, 0, 0],
                    vertices[1] * P._matrix[:, 1, 1],
                    vertices[2] * P._matrix[:, 2, 2],
                ]
            ]
        )
        self.assertTrue(torch.allclose(scale_grad, grad_scale))


class TestSfMOrthographicProjection(TestCaseMixin, unittest.TestCase):
    def test_orthographic(self):
        cameras = SfMOrthographicCameras()
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)

        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1, projected_verts))

    def test_orthographic_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0

        cameras = SfMOrthographicCameras(
            focal_length=((focal_length_x, focal_length_y),)
        )
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, 0] *= focal_length_x
        projected_verts[:, :, 1] *= focal_length_y
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(
            vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
        )
        v3 = cameras.transform_points(vertices)
        self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v3[..., :2], v2[..., :2]))
        self.assertTrue(torch.allclose(v1, projected_verts))

    def test_orthographic_kwargs(self):
        cameras = SfMOrthographicCameras(
            focal_length=5.0, principal_point=((2.5, 2.5),)
        )
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, :2] *= 2.0
        projected_verts[:, :, 0] += 2.5
        projected_verts[:, :, 1] += 3.5
        v1 = P.transform_points(vertices)
        self.assertTrue(torch.allclose(v1, projected_verts))


class TestSfMPerspectiveProjection(TestCaseMixin, unittest.TestCase):
    def test_perspective(self):
        cameras = SfMPerspectiveCameras()
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(vertices)
        self.assertTrue(torch.allclose(v1, v2))

    def test_perspective_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0
        p0x = 15.0
        p0y = 30.0

        cameras = SfMPerspectiveCameras(
            focal_length=((focal_length_x, focal_length_y),),
            principal_point=((p0x, p0y),),
        )
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(
            vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
        )
        v3 = cameras.transform_points(vertices)
        self.assertTrue(torch.allclose(v1, v2))
        self.assertTrue(torch.allclose(v3[..., :2], v2[..., :2]))

    def test_perspective_kwargs(self):
        cameras = SfMPerspectiveCameras(
            focal_length=5.0, principal_point=((2.5, 2.5),)
        )
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(
            vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5
        )
        self.assertTrue(torch.allclose(v1, v2))