test_blending.py 14.6 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import numpy as np
import unittest
import torch

from pytorch3d.renderer.blending import (
    BlendParams,
    hard_rgb_blend,
    sigmoid_alpha_blend,
    softmax_rgb_blend,
)
from pytorch3d.renderer.mesh.rasterizer import Fragments


Nikhila Ravi's avatar
Nikhila Ravi committed
17
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
facebook-github-bot's avatar
facebook-github-bot committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    """
    Naive for loop based implementation of distance based alpha calculation.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0

                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
                pixel_colors[n, h, w, 3] = 1.0 - alpha

44
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
45
46


Nikhila Ravi's avatar
Nikhila Ravi committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def sigmoid_blend_naive_loop_backward(
    grad_images, images, fragments, blend_params
):
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    grad_distances = torch.zeros((N, H, W, K), dtype=dists.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0 - images[n, h, w, 3]
                grad_alpha = grad_images[n, h, w, 3]
                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        grad_distances[n, h, w, k] = (
                            grad_alpha * (-1.0 / sigma) * prob * alpha
                        )
    return grad_distances


facebook-github-bot's avatar
facebook-github-bot committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def softmax_blend_naive(colors, fragments, blend_params):
    """
    Naive for loop based implementation of softmax blending.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    zbuf = fragments.zbuf
    sigma = blend_params.sigma
    gamma = blend_params.gamma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    # Near and far clipping planes
    zfar = 100.0
    znear = 1.0

    bk_color = blend_params.background_color
    if not torch.is_tensor(bk_color):
        bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device)

    # Background color component
    delta = np.exp(1e-10 / gamma) * 1e-10
    delta = torch.tensor(delta).to(device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
105
                weights_k = torch.zeros(K, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
                zmax = 0.0

                # Loop over K to find max z.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        if zinv > zmax:
                            zmax = zinv

                # Loop over K faces to calculate 2D distance based probability
                # map and zbuf based weights for colors.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                        weights_k[k] = prob * torch.exp((zinv - zmax) / gamma)

                denom = weights_k.sum() + delta
                weights = weights_k / denom
                cols = (weights[..., None] * colors[n, h, w, :, :]).sum(dim=0)
                pixel_colors[n, h, w, :3] = cols
                pixel_colors[n, h, w, :3] += (delta / denom) * bk_color
                pixel_colors[n, h, w, 3] = 1.0 - alpha

131
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
132
133
134
135
136
137


class TestBlending(unittest.TestCase):
    def setUp(self) -> None:
        torch.manual_seed(42)

Nikhila Ravi's avatar
Nikhila Ravi committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def _compare_impls(
        self,
        fn1,
        fn2,
        args1,
        args2,
        grad_var1=None,
        grad_var2=None,
        compare_grads=True,
    ):

        out1 = fn1(*args1)
        out2 = fn2(*args2)
        self.assertTrue(torch.allclose(out1.cpu(), out2.cpu(), atol=1e-7))

        # Check gradients
        if not compare_grads:
            return

        grad_out = torch.randn_like(out1)
        (out1 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var1, "grad"))

        (out2 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var2, "grad"))
        self.assertTrue(
            torch.allclose(
                grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5
            )
        )

facebook-github-bot's avatar
facebook-github-bot committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def test_hard_rgb_blend(self):
        N, H, W, K = 5, 10, 10, 20
        pix_to_face = torch.ones((N, H, W, K))
        bary_coords = torch.ones((N, H, W, K, 3))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,
            zbuf=pix_to_face,  # dummy
            dists=pix_to_face,  # dummy
        )
        colors = bary_coords.clone()
        top_k = torch.randn((K, 3))
        colors[..., :, :] = top_k
        images = hard_rgb_blend(colors, fragments)
        expected_vals = torch.ones((N, H, W, 4))
        pix_cols = torch.ones_like(expected_vals[..., :3]) * top_k[0, :]
        expected_vals[..., :3] = pix_cols
        self.assertTrue(torch.allclose(images, expected_vals))

Nikhila Ravi's avatar
Nikhila Ravi committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def test_sigmoid_alpha_blend_manual_gradients(self):
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
        N, S, K = 2, 3, 2
        device = torch.device("cuda")
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
        dists = torch.randn(
            size=(N, S, S, K), requires_grad=True, device=device
        )
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists,
        )
        blend_params = BlendParams(sigma=1e-3)
        pix_cols = sigmoid_blend_naive_loop(colors, fragments, blend_params)
        grad_out = torch.randn_like(pix_cols)

        # Backward pass
        pix_cols.backward(grad_out)
        grad_dists = sigmoid_blend_naive_loop_backward(
            grad_out, pix_cols, fragments, blend_params
        )
        self.assertTrue(torch.allclose(dists.grad, grad_dists, atol=1e-7))

    def test_sigmoid_alpha_blend_python(self):
facebook-github-bot's avatar
facebook-github-bot committed
224
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
225
        Test outputs of python tensorised function and python loop
facebook-github-bot's avatar
facebook-github-bot committed
226
227
        """

Nikhila Ravi's avatar
Nikhila Ravi committed
228
229
230
231
232
233
234
235
236
237
238
239
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
        N, S, K = 2, 10, 5
        device = torch.device("cuda")
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
facebook-github-bot's avatar
facebook-github-bot committed
240
241
        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
242
243
244
245
        dists1 = torch.randn(
            size=(N, S, S, K), requires_grad=True, device=device
        )
        dists2 = dists1.detach().clone()
facebook-github-bot's avatar
facebook-github-bot committed
246
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
247

facebook-github-bot's avatar
facebook-github-bot committed
248
249
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
250
251
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
252
253
254
255
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
256
257
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
258
259
260
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
261
262
263
264
265
266
267
268
269
270
271
272
273
        blend_params = BlendParams(sigma=1e-2)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)

        self._compare_impls(
            sigmoid_alpha_blend,
            sigmoid_blend_naive_loop,
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
274
275
276
277
278

    def test_softmax_rgb_blend(self):
        # Create dummy outputs of rasterization simulating a cube in the centre
        # of the image with surrounding padded values.
        N, S, K = 1, 8, 2
Nikhila Ravi's avatar
Nikhila Ravi committed
279
280
281
282
        device = torch.device("cuda")
        pix_to_face = -torch.ones(
            (N, S, S, K), dtype=torch.int64, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
283
        h = int(S / 2)
Nikhila Ravi's avatar
Nikhila Ravi committed
284
285
286
        pix_to_face_full = torch.randint(
            size=(N, h, h, K), low=0, high=100, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
287
288
289
        s = int(S / 4)
        e = int(0.75 * S)
        pix_to_face[:, s:e, s:e, :] = pix_to_face_full
Nikhila Ravi's avatar
Nikhila Ravi committed
290
        empty = torch.tensor([], device=device)
facebook-github-bot's avatar
facebook-github-bot committed
291

Nikhila Ravi's avatar
Nikhila Ravi committed
292
        random_sign_flip = torch.rand((N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
293
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
294
        zbuf1 = torch.randn(size=(N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
295
296
297

        # randomly flip the sign of the distance
        # (-) means inside triangle, (+) means outside triangle.
Nikhila Ravi's avatar
Nikhila Ravi committed
298
299
300
        dists1 = (
            torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
        )
facebook-github-bot's avatar
facebook-github-bot committed
301
302
303
304
        dists2 = dists1.clone()
        zbuf2 = zbuf1.clone()
        dists1.requires_grad = True
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
305
        colors = torch.randn((N, S, S, K, 3), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
306
307
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
308
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
309
310
311
312
313
            zbuf=zbuf1,
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
314
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
315
316
317
318
            zbuf=zbuf2,
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
319
320
321
322
323
324
325
326
327
328
329
330
        blend_params = BlendParams(sigma=1e-3)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)
        self._compare_impls(
            softmax_rgb_blend,
            softmax_blend_naive,
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
331

Nikhila Ravi's avatar
Nikhila Ravi committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    @staticmethod
    def bm_sigmoid_alpha_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
        device: str = "cpu",
    ):
        if torch.cuda.is_available() and "cuda:" in device:
            # If a device other than the default is used, set the device explicity.
            torch.cuda.set_device(device)

        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K), device=device)
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
        dists1 = torch.randn(
            size=(N, S, S, K), requires_grad=True, device=device
        )
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists1,
        )
        blend_params = BlendParams(sigma=1e-3)
        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
            images = sigmoid_alpha_blend(colors, fragments, blend_params)
            images.sum().backward()
            torch.cuda.synchronize()

        return fn

    @staticmethod
    def bm_softmax_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
        device: str = "cpu",
    ):
        if torch.cuda.is_available() and "cuda:" in device:
            # If a device other than the default is used, set the device explicity.
            torch.cuda.set_device(device)

        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K), device=device)
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
        dists1 = torch.randn(
            size=(N, S, S, K), requires_grad=True, device=device
        )
        zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=zbuf,
            dists=dists1,
        )
        blend_params = BlendParams(sigma=1e-3)

        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
            images = softmax_rgb_blend(colors, fragments, blend_params)
            images.sum().backward()
            torch.cuda.synchronize()

        return fn
423
424
425

    def test_blend_params(self):
        """Test colour parameter of BlendParams().
Nikhila Ravi's avatar
Nikhila Ravi committed
426
427
            Assert passed value overrides default value.
            """
428
429
430
431
        bp_default = BlendParams()
        bp_new = BlendParams(background_color=(0.5, 0.5, 0.5))
        self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5))
        self.assertEqual(bp_default.background_color, (1.0, 1.0, 1.0))