test_points_normals.py 6.38 KB
Newer Older
David Novotny's avatar
David Novotny committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
from typing import Tuple, Union

import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import (
    estimate_pointcloud_local_coord_frames,
    estimate_pointcloud_normals,
)
from pytorch3d.structures.pointclouds import Pointclouds


DEBUG = False


class TestPCLNormals(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

    @staticmethod
    def init_spherical_pcl(
        batch_size=3, num_points=3000, device=None, use_pointclouds=False
    ) -> Tuple[Union[torch.Tensor, Pointclouds], torch.Tensor]:
        # random spherical point cloud
        pcl = torch.randn(
            (batch_size, num_points, 3), device=device, dtype=torch.float32
        )
        pcl = torch.nn.functional.normalize(pcl, dim=2)

        # GT normals are the same as
        # the location of each point on the 0-centered sphere
        normals = pcl.clone()

        # scale and offset the sphere randomly
        pcl *= torch.rand(batch_size, 1, 1).type_as(pcl) + 1.0
        pcl += torch.randn(batch_size, 1, 3).type_as(pcl)

        if use_pointclouds:
            num_points = torch.randint(
                size=(batch_size,), low=int(num_points * 0.7), high=num_points
            )
            pcl, normals = [
                [x[:np] for x, np in zip(X, num_points)] for X in (pcl, normals)
            ]
            pcl = Pointclouds(pcl, normals=normals)

        return pcl, normals

    def test_pcl_normals(self, batch_size=3, num_points=300, neighborhood_size=50):
        """
        Tests the normal estimation on a spherical point cloud, where
        we know the ground truth normals.
        """
        device = torch.device("cuda:0")
        # run several times for different random point clouds
        for run_idx in range(3):
            # either use tensors or Pointclouds as input
            for use_pointclouds in (True, False):
                # get a spherical point cloud
                pcl, normals_gt = TestPCLNormals.init_spherical_pcl(
                    num_points=num_points,
                    batch_size=batch_size,
                    device=device,
                    use_pointclouds=use_pointclouds,
                )
                if use_pointclouds:
                    normals_gt = pcl.normals_padded()
                    num_pcl_points = pcl.num_points_per_cloud()
                else:
                    num_pcl_points = [pcl.shape[1]] * batch_size

                # check for both disambiguation options
                for disambiguate_directions in (True, False):
Nikhila Ravi's avatar
Nikhila Ravi committed
77
78
79
80
                    (
                        curvatures,
                        local_coord_frames,
                    ) = estimate_pointcloud_local_coord_frames(
David Novotny's avatar
David Novotny committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
                        pcl,
                        neighborhood_size=neighborhood_size,
                        disambiguate_directions=disambiguate_directions,
                    )

                    # estimate the normals
                    normals = estimate_pointcloud_normals(
                        pcl,
                        neighborhood_size=neighborhood_size,
                        disambiguate_directions=disambiguate_directions,
                    )

                    # TODO: temporarily disabled
                    if use_pointclouds:
                        # test that the class method gives the same output
                        normals_pcl = pcl.estimate_normals(
                            neighborhood_size=neighborhood_size,
                            disambiguate_directions=disambiguate_directions,
                            assign_to_self=True,
                        )
                        normals_from_pcl = pcl.normals_padded()
                        for nrm, nrm_from_pcl, nrm_pcl, np in zip(
                            normals, normals_from_pcl, normals_pcl, num_pcl_points
                        ):
                            self.assertClose(nrm[:np], nrm_pcl[:np], atol=1e-5)
                            self.assertClose(nrm[:np], nrm_from_pcl[:np], atol=1e-5)

                    # check that local coord frames give the same normal
                    # as normals
                    for nrm, lcoord, np in zip(
                        normals, local_coord_frames, num_pcl_points
                    ):
                        self.assertClose(nrm[:np], lcoord[:np, :, 0], atol=1e-5)

                    # dotp between normals and normals_gt
                    normal_parallel = (normals_gt * normals).sum(2)

                    # check that normals are on average
                    # parallel to the expected ones
                    for normp, np in zip(normal_parallel, num_pcl_points):
                        abs_parallel = normp[:np].abs()
                        avg_parallel = abs_parallel.mean()
                        std_parallel = abs_parallel.std()
                        self.assertClose(
                            avg_parallel, torch.ones_like(avg_parallel), atol=1e-2
                        )
                        self.assertClose(
                            std_parallel, torch.zeros_like(std_parallel), atol=1e-2
                        )

                    if disambiguate_directions:
                        # check that 95% of normal dot products
                        # have the same sign
                        for normp, np in zip(normal_parallel, num_pcl_points):
                            n_pos = (normp[:np] > 0).sum()
                            self.assertTrue((n_pos > np * 0.95) or (n_pos < np * 0.05))

                    if DEBUG and run_idx == 0 and not use_pointclouds:
                        import os
                        from pytorch3d.io.ply_io import save_ply

                        # export to .ply
                        outdir = "/tmp/pt3d_pcl_normals_test/"
                        os.makedirs(outdir, exist_ok=True)
                        plyfile = os.path.join(
                            outdir, f"pcl_disamb={disambiguate_directions}.ply"
                        )
                        print(f"Storing point cloud with normals to {plyfile}.")
                        pcl_idx = 0
                        save_ply(
                            plyfile,
                            pcl[pcl_idx].cpu(),
                            faces=None,
                            verts_normals=normals[pcl_idx].cpu(),
                        )