test_meshes.py 47.5 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

3
import itertools
4
import random
facebook-github-bot's avatar
facebook-github-bot committed
5
6
import unittest

7
8
import numpy as np
import torch
facebook-github-bot's avatar
facebook-github-bot committed
9
from common_testing import TestCaseMixin
10
from pytorch3d.structures.meshes import Meshes
facebook-github-bot's avatar
facebook-github-bot committed
11
12


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def init_mesh(
    num_meshes: int = 10,
    max_v: int = 100,
    max_f: int = 300,
    lists_to_tensors: bool = False,
    device: str = "cpu",
    requires_grad: bool = False,
):
    """
    Function to generate a Meshes object of N meshes with
    random numbers of vertices and faces.

    Args:
        num_meshes: Number of meshes to generate.
        max_v: Max number of vertices per mesh.
        max_f: Max number of faces per mesh.
        lists_to_tensors: Determines whether the generated meshes should be
                            constructed from lists (=False) or
                            a tensor (=True) of faces/verts.

    Returns:
        Meshes object.
    """
    device = torch.device(device)

    verts_list = []
    faces_list = []

    # Randomly generate numbers of faces and vertices in each mesh.
    if lists_to_tensors:
        # If we define faces/verts with tensors, f/v has to be the
        # same for each mesh in the batch.
        f = torch.randint(1, max_f, size=(1,), dtype=torch.int32)
        v = torch.randint(3, high=max_v, size=(1,), dtype=torch.int32)
        f = f.repeat(num_meshes)
        v = v.repeat(num_meshes)
    else:
        # For lists of faces and vertices, we can sample different v/f
        # per mesh.
        f = torch.randint(max_f, size=(num_meshes,), dtype=torch.int32)
        v = torch.randint(3, high=max_v, size=(num_meshes,), dtype=torch.int32)

    # Generate the actual vertices and faces.
    for i in range(num_meshes):
        verts = torch.rand(
            (v[i], 3),
            dtype=torch.float32,
            device=device,
            requires_grad=requires_grad,
        )
        faces = torch.randint(v[i], size=(f[i], 3), dtype=torch.int64, device=device)
        verts_list.append(verts)
        faces_list.append(faces)
facebook-github-bot's avatar
facebook-github-bot committed
66

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
67
68
69
    if lists_to_tensors:
        verts_list = torch.stack(verts_list)
        faces_list = torch.stack(faces_list)
facebook-github-bot's avatar
facebook-github-bot committed
70

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
71
    return Meshes(verts=verts_list, faces=faces_list)
facebook-github-bot's avatar
facebook-github-bot committed
72
73


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
74
75
76
def init_simple_mesh(device: str = "cpu"):
    """
    Returns a Meshes data structure of simple mesh examples.
facebook-github-bot's avatar
facebook-github-bot committed
77

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
78
79
80
81
    Returns:
        Meshes object.
    """
    device = torch.device(device)
facebook-github-bot's avatar
facebook-github-bot committed
82

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    verts = [
        torch.tensor(
            [[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]],
            dtype=torch.float32,
            device=device,
        ),
        torch.tensor(
            [[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]],
            dtype=torch.float32,
            device=device,
        ),
        torch.tensor(
            [
                [0.7, 0.3, 0.6],
                [0.2, 0.4, 0.8],
                [0.9, 0.5, 0.2],
                [0.2, 0.3, 0.4],
                [0.9, 0.3, 0.8],
            ],
            dtype=torch.float32,
            device=device,
        ),
    ]
    faces = [
        torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device),
        torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64, device=device),
        torch.tensor(
            [
                [1, 2, 0],
                [0, 1, 3],
                [2, 3, 1],
                [4, 3, 2],
                [4, 0, 1],
                [4, 3, 1],
                [4, 2, 1],
            ],
            dtype=torch.int64,
            device=device,
        ),
    ]
    return Meshes(verts=verts, faces=faces)


class TestMeshes(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)
facebook-github-bot's avatar
facebook-github-bot committed
130
131

    def test_simple(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
132
        mesh = init_simple_mesh("cuda:0")
facebook-github-bot's avatar
facebook-github-bot committed
133

Nikhila Ravi's avatar
Nikhila Ravi committed
134
        # Check that faces/verts per mesh are set in init:
135
136
        self.assertClose(mesh._num_faces_per_mesh.cpu(), torch.tensor([1, 2, 7]))
        self.assertClose(mesh._num_verts_per_mesh.cpu(), torch.tensor([3, 4, 5]))
Nikhila Ravi's avatar
Nikhila Ravi committed
137
138

        # Check computed tensors
facebook-github-bot's avatar
facebook-github-bot committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        self.assertClose(
            mesh.verts_packed_to_mesh_idx().cpu(),
            torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            mesh.mesh_to_verts_packed_first_idx().cpu(), torch.tensor([0, 3, 7])
        )
        self.assertClose(
            mesh.verts_padded_to_packed_idx().cpu(),
            torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]),
        )
        self.assertClose(
            mesh.faces_packed_to_mesh_idx().cpu(),
            torch.tensor([0, 1, 1, 2, 2, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            mesh.mesh_to_faces_packed_first_idx().cpu(), torch.tensor([0, 1, 3])
        )
        self.assertClose(
158
            mesh.num_edges_per_mesh().cpu(), torch.tensor([3, 5, 10], dtype=torch.int32)
facebook-github-bot's avatar
facebook-github-bot committed
159
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
160
161
162
163
        self.assertClose(
            mesh.mesh_to_edges_packed_first_idx().cpu(),
            torch.tensor([0, 3, 8], dtype=torch.int64),
        )
facebook-github-bot's avatar
facebook-github-bot committed
164

165
166
167
168
    def test_init_error(self):
        # Check if correct errors are raised when verts/faces are on
        # different devices

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
169
        mesh = init_mesh(10, 10, 100)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        verts_list = mesh.verts_list()  # all tensors on cpu
        verts_list = [
            v.to("cuda:0") if random.uniform(0, 1) > 0.5 else v for v in verts_list
        ]
        faces_list = mesh.faces_list()

        with self.assertRaises(ValueError) as cm:
            Meshes(verts=verts_list, faces=faces_list)
            self.assertTrue("same device" in cm.msg)

        verts_padded = mesh.verts_padded()  # on cpu
        verts_padded = verts_padded.to("cuda:0")
        faces_padded = mesh.faces_padded()

        with self.assertRaises(ValueError) as cm:
            Meshes(verts=verts_padded, faces=faces_padded)
            self.assertTrue("same device" in cm.msg)

facebook-github-bot's avatar
facebook-github-bot committed
188
189
190
191
192
    def test_simple_random_meshes(self):

        # Define the test mesh object either as a list or tensor of faces/verts.
        for lists_to_tensors in (False, True):
            N = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
193
            mesh = init_mesh(N, 100, 300, lists_to_tensors=lists_to_tensors)
facebook-github-bot's avatar
facebook-github-bot committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            verts_list = mesh.verts_list()
            faces_list = mesh.faces_list()

            # Check batch calculations.
            verts_padded = mesh.verts_padded()
            faces_padded = mesh.faces_padded()
            verts_per_mesh = mesh.num_verts_per_mesh()
            faces_per_mesh = mesh.num_faces_per_mesh()
            for n in range(N):
                v = verts_list[n].shape[0]
                f = faces_list[n].shape[0]
                self.assertClose(verts_padded[n, :v, :], verts_list[n])
                if verts_padded.shape[1] > v:
                    self.assertTrue(verts_padded[n, v:, :].eq(0).all())
                self.assertClose(faces_padded[n, :f, :], faces_list[n])
                if faces_padded.shape[1] > f:
                    self.assertTrue(faces_padded[n, f:, :].eq(-1).all())
                self.assertEqual(verts_per_mesh[n], v)
                self.assertEqual(faces_per_mesh[n], f)

            # Check compute packed.
            verts_packed = mesh.verts_packed()
            vert_to_mesh = mesh.verts_packed_to_mesh_idx()
            mesh_to_vert = mesh.mesh_to_verts_packed_first_idx()
            faces_packed = mesh.faces_packed()
            face_to_mesh = mesh.faces_packed_to_mesh_idx()
            mesh_to_face = mesh.mesh_to_faces_packed_first_idx()

            curv, curf = 0, 0
            for n in range(N):
                v = verts_list[n].shape[0]
                f = faces_list[n].shape[0]
226
227
                self.assertClose(verts_packed[curv : curv + v, :], verts_list[n])
                self.assertClose(faces_packed[curf : curf + f, :] - curv, faces_list[n])
facebook-github-bot's avatar
facebook-github-bot committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
                self.assertTrue(vert_to_mesh[curv : curv + v].eq(n).all())
                self.assertTrue(face_to_mesh[curf : curf + f].eq(n).all())
                self.assertTrue(mesh_to_vert[n] == curv)
                self.assertTrue(mesh_to_face[n] == curf)
                curv += v
                curf += f

            # Check compute edges and compare with numpy unique.
            edges = mesh.edges_packed().cpu().numpy()
            edge_to_mesh_idx = mesh.edges_packed_to_mesh_idx().cpu().numpy()
            num_edges_per_mesh = mesh.num_edges_per_mesh().cpu().numpy()

            npfaces_packed = mesh.faces_packed().cpu().numpy()
            e01 = npfaces_packed[:, [0, 1]]
            e12 = npfaces_packed[:, [1, 2]]
            e20 = npfaces_packed[:, [2, 0]]
            npedges = np.concatenate((e12, e20, e01), axis=0)
            npedges = np.sort(npedges, axis=1)

247
            unique_edges, unique_idx = np.unique(npedges, return_index=True, axis=0)
facebook-github-bot's avatar
facebook-github-bot committed
248
249
250
251
252
253
254
            self.assertTrue(np.allclose(edges, unique_edges))
            temp = face_to_mesh.cpu().numpy()
            temp = np.concatenate((temp, temp, temp), axis=0)
            edge_to_mesh = temp[unique_idx]
            self.assertTrue(np.allclose(edge_to_mesh_idx, edge_to_mesh))
            num_edges = np.bincount(edge_to_mesh, minlength=N)
            self.assertTrue(np.allclose(num_edges_per_mesh, num_edges))
Georgia Gkioxari's avatar
Georgia Gkioxari committed
255
256
257
258
259
260
261
            mesh_to_edges_packed_first_idx = (
                mesh.mesh_to_edges_packed_first_idx().cpu().numpy()
            )
            self.assertTrue(
                np.allclose(mesh_to_edges_packed_first_idx[1:], num_edges.cumsum()[:-1])
            )
            self.assertTrue(mesh_to_edges_packed_first_idx[0] == 0)
facebook-github-bot's avatar
facebook-github-bot committed
262
263
264
265
266
267
268
269
270
271

    def test_allempty(self):
        verts_list = []
        faces_list = []
        mesh = Meshes(verts=verts_list, faces=faces_list)
        self.assertEqual(len(mesh), 0)
        self.assertEqual(mesh.verts_padded().shape[0], 0)
        self.assertEqual(mesh.faces_padded().shape[0], 0)
        self.assertEqual(mesh.verts_packed().shape[0], 0)
        self.assertEqual(mesh.faces_packed().shape[0], 0)
Nikhila Ravi's avatar
Nikhila Ravi committed
272
273
        self.assertEqual(mesh.num_faces_per_mesh().shape[0], 0)
        self.assertEqual(mesh.num_verts_per_mesh().shape[0], 0)
facebook-github-bot's avatar
facebook-github-bot committed
274
275
276
277
278
279
280
281
282
283
284
285

    def test_empty(self):
        N, V, F = 10, 100, 300
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        for n in range(N):
            if valid[n]:
                v = torch.randint(
                    3, high=V, size=(1,), dtype=torch.int32, device=device
                )[0]
286
                f = torch.randint(F, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
287
                verts = torch.rand((v, 3), dtype=torch.float32, device=device)
288
                faces = torch.randint(v, size=(f, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            else:
                verts = torch.tensor([], dtype=torch.float32, device=device)
                faces = torch.tensor([], dtype=torch.int64, device=device)
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)
        verts_padded = mesh.verts_padded()
        faces_padded = mesh.faces_padded()
        verts_per_mesh = mesh.num_verts_per_mesh()
        faces_per_mesh = mesh.num_faces_per_mesh()
        for n in range(N):
            v = len(verts_list[n])
            f = len(faces_list[n])
            if v > 0:
                self.assertClose(verts_padded[n, :v, :], verts_list[n])
                if verts_padded.shape[1] > v:
                    self.assertTrue(verts_padded[n, v:, :].eq(0).all())
            if f > 0:
                self.assertClose(faces_padded[n, :f, :], faces_list[n])
                if faces_padded.shape[1] > f:
                    self.assertTrue(faces_padded[n, f:, :].eq(-1).all())
            self.assertTrue(verts_per_mesh[n] == v)
            self.assertTrue(faces_per_mesh[n] == f)

    def test_padding(self):
        N, V, F = 10, 100, 300
        device = torch.device("cuda:0")
        verts, faces = [], []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        num_verts, num_faces = (
            torch.zeros(N, dtype=torch.int32),
            torch.zeros(N, dtype=torch.int32),
        )
        for n in range(N):
            verts.append(torch.rand((V, 3), dtype=torch.float32, device=device))
325
            this_faces = torch.full((F, 3), -1, dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
326
327
328
329
            if valid[n]:
                v = torch.randint(
                    3, high=V, size=(1,), dtype=torch.int32, device=device
                )[0]
330
                f = torch.randint(F, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
331
332
333
334
335
336
337
338
339
                this_faces[:f, :] = torch.randint(
                    v, size=(f, 3), dtype=torch.int64, device=device
                )
                num_verts[n] = v
                num_faces[n] = f
            faces.append(this_faces)

        mesh = Meshes(verts=torch.stack(verts), faces=torch.stack(faces))

Nikhila Ravi's avatar
Nikhila Ravi committed
340
        # Check verts/faces per mesh are set correctly in init.
341
        self.assertListEqual(mesh._num_faces_per_mesh.tolist(), num_faces.tolist())
Nikhila Ravi's avatar
Nikhila Ravi committed
342
        self.assertListEqual(mesh._num_verts_per_mesh.tolist(), [V] * N)
facebook-github-bot's avatar
facebook-github-bot committed
343
344
345
346
347
348

        for n, (vv, ff) in enumerate(zip(mesh.verts_list(), mesh.faces_list())):
            self.assertClose(ff, faces[n][: num_faces[n]])
            self.assertClose(vv, verts[n])

        new_faces = [ff.clone() for ff in faces]
349
350
        v = torch.randint(3, high=V, size=(1,), dtype=torch.int32, device=device)[0]
        f = torch.randint(F - 10, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
351
352
353
354
355
356
357
358
359
360
361
        this_faces = torch.full((F, 3), -1, dtype=torch.int64, device=device)
        this_faces[10 : f + 10, :] = torch.randint(
            v, size=(f, 3), dtype=torch.int64, device=device
        )
        new_faces[3] = this_faces

        with self.assertRaisesRegex(ValueError, "Padding of faces"):
            Meshes(verts=torch.stack(verts), faces=torch.stack(new_faces))

    def test_clone(self):
        N = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
362
        mesh = init_mesh(N, 10, 100)
facebook-github-bot's avatar
facebook-github-bot committed
363
364
365
366
367
368
369
370
371
372
373
        for force in [0, 1]:
            if force:
                # force mesh to have computed attributes
                mesh.verts_packed()
                mesh.edges_packed()
                mesh.verts_padded()

            new_mesh = mesh.clone()

            # Modify tensors in both meshes.
            new_mesh._verts_list[0] = new_mesh._verts_list[0] * 5
Georgia Gkioxari's avatar
Georgia Gkioxari committed
374

facebook-github-bot's avatar
facebook-github-bot committed
375
376
377
378
379
380
381
382
383
384
            # Check cloned and original Meshes objects do not share tensors.
            self.assertFalse(
                torch.allclose(new_mesh._verts_list[0], mesh._verts_list[0])
            )
            self.assertSeparate(new_mesh.verts_packed(), mesh.verts_packed())
            self.assertSeparate(new_mesh.verts_padded(), mesh.verts_padded())
            self.assertSeparate(new_mesh.faces_packed(), mesh.faces_packed())
            self.assertSeparate(new_mesh.faces_padded(), mesh.faces_padded())
            self.assertSeparate(new_mesh.edges_packed(), mesh.edges_packed())

385
386
    def test_detach(self):
        N = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
387
        mesh = init_mesh(N, 10, 100, requires_grad=True)
388
389
390
391
392
393
394
395
396
397
398
        for force in [0, 1]:
            if force:
                # force mesh to have computed attributes
                mesh.verts_packed()
                mesh.edges_packed()
                mesh.verts_padded()

            new_mesh = mesh.detach()

            self.assertFalse(new_mesh.verts_packed().requires_grad)
            self.assertClose(new_mesh.verts_packed(), mesh.verts_packed())
399
            self.assertFalse(new_mesh.verts_padded().requires_grad)
400
401
            self.assertClose(new_mesh.verts_padded(), mesh.verts_padded())
            for v, newv in zip(mesh.verts_list(), new_mesh.verts_list()):
402
                self.assertFalse(newv.requires_grad)
403
404
                self.assertClose(newv, v)

facebook-github-bot's avatar
facebook-github-bot committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    def test_laplacian_packed(self):
        def naive_laplacian_packed(meshes):
            verts_packed = meshes.verts_packed()
            edges_packed = meshes.edges_packed()
            V = verts_packed.shape[0]

            L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)
            for e in edges_packed:
                L[e[0], e[1]] = 1
                # symetric
                L[e[1], e[0]] = 1

            deg = L.sum(1).view(-1, 1)
            deg[deg > 0] = 1.0 / deg[deg > 0]
            L = L * deg
            diag = torch.eye(V, dtype=torch.float32, device=meshes.device)
            L.masked_fill_(diag > 0, -1)
            return L

        # Note that we don't test with random meshes for this case, as the
        # definition of Laplacian is defined for simple graphs (aka valid meshes)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
426
        meshes = init_simple_mesh("cuda:0")
facebook-github-bot's avatar
facebook-github-bot committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

        lapl_naive = naive_laplacian_packed(meshes)
        lapl = meshes.laplacian_packed().to_dense()
        # check with naive
        self.assertClose(lapl, lapl_naive)

    def test_offset_verts(self):
        def naive_offset_verts(mesh, vert_offsets_packed):
            # new Meshes class
            new_verts_packed = mesh.verts_packed() + vert_offsets_packed
            new_verts_list = list(
                new_verts_packed.split(mesh.num_verts_per_mesh().tolist(), 0)
            )
            new_faces_list = [f.clone() for f in mesh.faces_list()]
            return Meshes(verts=new_verts_list, faces=new_faces_list)

        N = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
444
        mesh = init_mesh(N, 30, 100, lists_to_tensors=True)
facebook-github-bot's avatar
facebook-github-bot committed
445
446
        all_v = mesh.verts_packed().size(0)
        verts_per_mesh = mesh.num_verts_per_mesh()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
447
        for force, deform_shape in itertools.product([False, True], [(all_v, 3), 3]):
facebook-github-bot's avatar
facebook-github-bot committed
448
449
450
451
452
453
454
455
456
            if force:
                # force mesh to have computed attributes
                mesh._compute_packed(refresh=True)
                mesh._compute_padded()
                mesh._compute_edges_packed()
                mesh.verts_padded_to_packed_idx()
                mesh._compute_face_areas_normals(refresh=True)
                mesh._compute_vertex_normals(refresh=True)

457
            deform = torch.rand(deform_shape, dtype=torch.float32, device=mesh.device)
facebook-github-bot's avatar
facebook-github-bot committed
458
459
460
461
462
463
464
465
466
            # new meshes class to hold the deformed mesh
            new_mesh_naive = naive_offset_verts(mesh, deform)

            new_mesh = mesh.offset_verts(deform)

            # check verts_list & faces_list
            verts_cumsum = torch.cumsum(verts_per_mesh, 0).tolist()
            verts_cumsum.insert(0, 0)
            for i in range(N):
467
468
469
470
471
                item_offset = (
                    deform
                    if deform.ndim == 1
                    else deform[verts_cumsum[i] : verts_cumsum[i + 1]]
                )
facebook-github-bot's avatar
facebook-github-bot committed
472
473
                self.assertClose(
                    new_mesh.verts_list()[i],
474
                    mesh.verts_list()[i] + item_offset,
facebook-github-bot's avatar
facebook-github-bot committed
475
476
477
478
                )
                self.assertClose(
                    new_mesh.verts_list()[i], new_mesh_naive.verts_list()[i]
                )
479
                self.assertClose(mesh.faces_list()[i], new_mesh_naive.faces_list()[i])
facebook-github-bot's avatar
facebook-github-bot committed
480
481
482
                self.assertClose(
                    new_mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
483

facebook-github-bot's avatar
facebook-github-bot committed
484
485
486
487
                # check faces and vertex normals
                self.assertClose(
                    new_mesh.verts_normals_list()[i],
                    new_mesh_naive.verts_normals_list()[i],
488
                    atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
489
490
491
492
                )
                self.assertClose(
                    new_mesh.faces_normals_list()[i],
                    new_mesh_naive.faces_normals_list()[i],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
493
                    atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
494
495
496
                )

            # check padded & packed
497
498
499
500
501
            self.assertClose(new_mesh.faces_padded(), new_mesh_naive.faces_padded())
            self.assertClose(new_mesh.verts_padded(), new_mesh_naive.verts_padded())
            self.assertClose(new_mesh.faces_packed(), new_mesh_naive.faces_packed())
            self.assertClose(new_mesh.verts_packed(), new_mesh_naive.verts_packed())
            self.assertClose(new_mesh.edges_packed(), new_mesh_naive.edges_packed())
facebook-github-bot's avatar
facebook-github-bot committed
502
503
504
505
506
507
508
509
510
            self.assertClose(
                new_mesh.verts_packed_to_mesh_idx(),
                new_mesh_naive.verts_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.mesh_to_verts_packed_first_idx(),
                new_mesh_naive.mesh_to_verts_packed_first_idx(),
            )
            self.assertClose(
511
                new_mesh.num_verts_per_mesh(), new_mesh_naive.num_verts_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
512
513
514
515
516
517
518
519
520
521
            )
            self.assertClose(
                new_mesh.faces_packed_to_mesh_idx(),
                new_mesh_naive.faces_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.mesh_to_faces_packed_first_idx(),
                new_mesh_naive.mesh_to_faces_packed_first_idx(),
            )
            self.assertClose(
522
                new_mesh.num_faces_per_mesh(), new_mesh_naive.num_faces_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            )
            self.assertClose(
                new_mesh.edges_packed_to_mesh_idx(),
                new_mesh_naive.edges_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.verts_padded_to_packed_idx(),
                new_mesh_naive.verts_padded_to_packed_idx(),
            )
            self.assertTrue(all(new_mesh.valid == new_mesh_naive.valid))
            self.assertTrue(new_mesh.equisized == new_mesh_naive.equisized)

            # check face areas, normals and vertex normals
            self.assertClose(
537
538
539
                new_mesh.verts_normals_packed(),
                new_mesh_naive.verts_normals_packed(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
540
541
            )
            self.assertClose(
542
543
544
                new_mesh.verts_normals_padded(),
                new_mesh_naive.verts_normals_padded(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
545
546
            )
            self.assertClose(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
547
548
549
                new_mesh.faces_normals_packed(),
                new_mesh_naive.faces_normals_packed(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
550
551
            )
            self.assertClose(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
552
553
554
                new_mesh.faces_normals_padded(),
                new_mesh_naive.faces_normals_padded(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
555
556
            )
            self.assertClose(
557
                new_mesh.faces_areas_packed(), new_mesh_naive.faces_areas_packed()
facebook-github-bot's avatar
facebook-github-bot committed
558
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
559
560
561
562
            self.assertClose(
                new_mesh.mesh_to_edges_packed_first_idx(),
                new_mesh_naive.mesh_to_edges_packed_first_idx(),
            )
facebook-github-bot's avatar
facebook-github-bot committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576

    def test_scale_verts(self):
        def naive_scale_verts(mesh, scale):
            if not torch.is_tensor(scale):
                scale = torch.ones(len(mesh)).mul_(scale)
            # new Meshes class
            new_verts_list = [
                scale[i] * v.clone() for (i, v) in enumerate(mesh.verts_list())
            ]
            new_faces_list = [f.clone() for f in mesh.faces_list()]
            return Meshes(verts=new_verts_list, faces=new_faces_list)

        N = 5
        for test in ["tensor", "scalar"]:
Georgia Gkioxari's avatar
Georgia Gkioxari committed
577
            for force in (False, True):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
578
                mesh = init_mesh(N, 10, 100, lists_to_tensors=True)
facebook-github-bot's avatar
facebook-github-bot committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
                if force:
                    # force mesh to have computed attributes
                    mesh.verts_packed()
                    mesh.edges_packed()
                    mesh.verts_padded()
                    mesh._compute_face_areas_normals(refresh=True)
                    mesh._compute_vertex_normals(refresh=True)

                if test == "tensor":
                    scales = torch.rand(N)
                elif test == "scalar":
                    scales = torch.rand(1)[0].item()
                new_mesh_naive = naive_scale_verts(mesh, scales)
                new_mesh = mesh.scale_verts(scales)
                for i in range(N):
                    if test == "tensor":
                        self.assertClose(
596
                            scales[i] * mesh.verts_list()[i], new_mesh.verts_list()[i]
facebook-github-bot's avatar
facebook-github-bot committed
597
598
599
                        )
                    else:
                        self.assertClose(
600
                            scales * mesh.verts_list()[i], new_mesh.verts_list()[i]
facebook-github-bot's avatar
facebook-github-bot committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
                        )
                    self.assertClose(
                        new_mesh.verts_list()[i], new_mesh_naive.verts_list()[i]
                    )
                    self.assertClose(
                        mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                    )
                    self.assertClose(
                        new_mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                    )
                    # check face and vertex normals
                    self.assertClose(
                        new_mesh.verts_normals_list()[i],
                        new_mesh_naive.verts_normals_list()[i],
                    )
                    self.assertClose(
                        new_mesh.faces_normals_list()[i],
                        new_mesh_naive.faces_normals_list()[i],
                    )

                # check padded & packed
622
623
624
625
626
                self.assertClose(new_mesh.faces_padded(), new_mesh_naive.faces_padded())
                self.assertClose(new_mesh.verts_padded(), new_mesh_naive.verts_padded())
                self.assertClose(new_mesh.faces_packed(), new_mesh_naive.faces_packed())
                self.assertClose(new_mesh.verts_packed(), new_mesh_naive.verts_packed())
                self.assertClose(new_mesh.edges_packed(), new_mesh_naive.edges_packed())
facebook-github-bot's avatar
facebook-github-bot committed
627
628
629
630
631
632
633
634
635
                self.assertClose(
                    new_mesh.verts_packed_to_mesh_idx(),
                    new_mesh_naive.verts_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.mesh_to_verts_packed_first_idx(),
                    new_mesh_naive.mesh_to_verts_packed_first_idx(),
                )
                self.assertClose(
636
                    new_mesh.num_verts_per_mesh(), new_mesh_naive.num_verts_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
637
638
639
640
641
642
643
644
645
646
                )
                self.assertClose(
                    new_mesh.faces_packed_to_mesh_idx(),
                    new_mesh_naive.faces_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.mesh_to_faces_packed_first_idx(),
                    new_mesh_naive.mesh_to_faces_packed_first_idx(),
                )
                self.assertClose(
647
                    new_mesh.num_faces_per_mesh(), new_mesh_naive.num_faces_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
                )
                self.assertClose(
                    new_mesh.edges_packed_to_mesh_idx(),
                    new_mesh_naive.edges_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.verts_padded_to_packed_idx(),
                    new_mesh_naive.verts_padded_to_packed_idx(),
                )
                self.assertTrue(all(new_mesh.valid == new_mesh_naive.valid))
                self.assertTrue(new_mesh.equisized == new_mesh_naive.equisized)

                # check face areas, normals and vertex normals
                self.assertClose(
                    new_mesh.verts_normals_packed(),
                    new_mesh_naive.verts_normals_packed(),
                )
                self.assertClose(
                    new_mesh.verts_normals_padded(),
                    new_mesh_naive.verts_normals_padded(),
                )
                self.assertClose(
                    new_mesh.faces_normals_packed(),
                    new_mesh_naive.faces_normals_packed(),
                )
                self.assertClose(
                    new_mesh.faces_normals_padded(),
                    new_mesh_naive.faces_normals_padded(),
                )
                self.assertClose(
678
                    new_mesh.faces_areas_packed(), new_mesh_naive.faces_areas_packed()
facebook-github-bot's avatar
facebook-github-bot committed
679
                )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
680
681
682
683
                self.assertClose(
                    new_mesh.mesh_to_edges_packed_first_idx(),
                    new_mesh_naive.mesh_to_edges_packed_first_idx(),
                )
facebook-github-bot's avatar
facebook-github-bot committed
684
685
686

    def test_extend_list(self):
        N = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
687
        mesh = init_mesh(5, 10, 100)
facebook-github-bot's avatar
facebook-github-bot committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        for force in [0, 1]:
            if force:
                # force some computes to happen
                mesh._compute_packed(refresh=True)
                mesh._compute_padded()
                mesh._compute_edges_packed()
                mesh.verts_padded_to_packed_idx()
            new_mesh = mesh.extend(N)
            self.assertEqual(len(mesh) * 10, len(new_mesh))
            for i in range(len(mesh)):
                for n in range(N):
                    self.assertClose(
                        mesh.verts_list()[i], new_mesh.verts_list()[i * N + n]
                    )
                    self.assertClose(
                        mesh.faces_list()[i], new_mesh.faces_list()[i * N + n]
                    )
                    self.assertTrue(mesh.valid[i] == new_mesh.valid[i * N + n])
            self.assertAllSeparate(
                mesh.verts_list()
                + new_mesh.verts_list()
                + mesh.faces_list()
                + new_mesh.faces_list()
            )
            self.assertTrue(new_mesh._verts_packed is None)
            self.assertTrue(new_mesh._faces_packed is None)
            self.assertTrue(new_mesh._verts_padded is None)
            self.assertTrue(new_mesh._faces_padded is None)
            self.assertTrue(new_mesh._edges_packed is None)

        with self.assertRaises(ValueError):
            mesh.extend(N=-1)

    def test_to(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
722
        mesh = init_mesh(5, 10, 100, device=torch.device("cuda:0"))
facebook-github-bot's avatar
facebook-github-bot committed
723
724
725
726
727
728
729
        device = torch.device("cuda:1")

        new_mesh = mesh.to(device)
        self.assertTrue(new_mesh.device == device)
        self.assertTrue(mesh.device == torch.device("cuda:0"))

    def test_split_mesh(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
730
        mesh = init_mesh(5, 10, 100)
facebook-github-bot's avatar
facebook-github-bot committed
731
732
733
734
735
        split_sizes = [2, 3]
        split_meshes = mesh.split(split_sizes)
        self.assertTrue(len(split_meshes[0]) == 2)
        self.assertTrue(
            split_meshes[0].verts_list()
736
            == [mesh.get_mesh_verts_faces(0)[0], mesh.get_mesh_verts_faces(1)[0]]
facebook-github-bot's avatar
facebook-github-bot committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        )
        self.assertTrue(len(split_meshes[1]) == 3)
        self.assertTrue(
            split_meshes[1].verts_list()
            == [
                mesh.get_mesh_verts_faces(2)[0],
                mesh.get_mesh_verts_faces(3)[0],
                mesh.get_mesh_verts_faces(4)[0],
            ]
        )

        split_sizes = [2, 0.3]
        with self.assertRaises(ValueError):
            mesh.split(split_sizes)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
752
753
754
755
756
    def test_update_padded(self):
        # Define the test mesh object either as a list or tensor of faces/verts.
        N = 10
        for lists_to_tensors in (False, True):
            for force in (True, False):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
757
                mesh = init_mesh(N, 100, 300, lists_to_tensors=lists_to_tensors)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
                num_verts_per_mesh = mesh.num_verts_per_mesh()
                if force:
                    # force mesh to have computed attributes
                    mesh.verts_packed()
                    mesh.edges_packed()
                    mesh.laplacian_packed()
                    mesh.faces_areas_packed()

                new_verts = torch.rand((mesh._N, mesh._V, 3), device=mesh.device)
                new_verts_list = [
                    new_verts[i, : num_verts_per_mesh[i]] for i in range(N)
                ]
                new_mesh = mesh.update_padded(new_verts)

                # check the attributes assigned at construction time
                self.assertEqual(new_mesh._N, mesh._N)
                self.assertEqual(new_mesh._F, mesh._F)
                self.assertEqual(new_mesh._V, mesh._V)
                self.assertEqual(new_mesh.equisized, mesh.equisized)
                self.assertTrue(all(new_mesh.valid == mesh.valid))
                self.assertNotSeparate(
                    new_mesh.num_verts_per_mesh(), mesh.num_verts_per_mesh()
                )
                self.assertClose(
                    new_mesh.num_verts_per_mesh(), mesh.num_verts_per_mesh()
                )
                self.assertNotSeparate(
                    new_mesh.num_faces_per_mesh(), mesh.num_faces_per_mesh()
                )
                self.assertClose(
                    new_mesh.num_faces_per_mesh(), mesh.num_faces_per_mesh()
                )

                # check that the following attributes are not assigned
                self.assertIsNone(new_mesh._verts_list)
                self.assertIsNone(new_mesh._faces_areas_packed)
                self.assertIsNone(new_mesh._faces_normals_packed)
                self.assertIsNone(new_mesh._verts_normals_packed)

                check_tensors = [
                    "_faces_packed",
                    "_verts_packed_to_mesh_idx",
                    "_faces_packed_to_mesh_idx",
                    "_mesh_to_verts_packed_first_idx",
                    "_mesh_to_faces_packed_first_idx",
                    "_edges_packed",
                    "_edges_packed_to_mesh_idx",
                    "_mesh_to_edges_packed_first_idx",
                    "_faces_packed_to_edges_packed",
                    "_num_edges_per_mesh",
                ]
                for k in check_tensors:
                    v = getattr(new_mesh, k)
                    if not force:
                        self.assertIsNone(v)
                    else:
                        v_old = getattr(mesh, k)
                        self.assertNotSeparate(v, v_old)
                        self.assertClose(v, v_old)

                # check verts/faces padded
                self.assertClose(new_mesh.verts_padded(), new_verts)
                self.assertNotSeparate(new_mesh.verts_padded(), new_verts)
                self.assertClose(new_mesh.faces_padded(), mesh.faces_padded())
                self.assertNotSeparate(new_mesh.faces_padded(), mesh.faces_padded())
                # check verts/faces list
                for i in range(N):
                    self.assertNotSeparate(
                        new_mesh.faces_list()[i], mesh.faces_list()[i]
                    )
                    self.assertClose(new_mesh.faces_list()[i], mesh.faces_list()[i])
                    self.assertSeparate(new_mesh.verts_list()[i], mesh.verts_list()[i])
                    self.assertClose(new_mesh.verts_list()[i], new_verts_list[i])
                # check verts/faces packed
                self.assertClose(new_mesh.verts_packed(), torch.cat(new_verts_list))
                self.assertSeparate(new_mesh.verts_packed(), mesh.verts_packed())
                self.assertClose(new_mesh.faces_packed(), mesh.faces_packed())
                # check pad_to_packed
                self.assertClose(
                    new_mesh.verts_padded_to_packed_idx(),
                    mesh.verts_padded_to_packed_idx(),
                )
                # check edges
                self.assertClose(new_mesh.edges_packed(), mesh.edges_packed())

facebook-github-bot's avatar
facebook-github-bot committed
843
844
845
846
847
848
849
    def test_get_mesh_verts_faces(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
850
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)

        for i, (V, F) in enumerate(verts_faces):
            verts, faces = mesh.get_mesh_verts_faces(i)
            self.assertTrue(len(verts) == V)
            self.assertClose(verts, verts_list[i])
            self.assertTrue(len(faces) == F)
            self.assertClose(faces, faces_list[i])

        with self.assertRaises(ValueError):
            mesh.get_mesh_verts_faces(5)
        with self.assertRaises(ValueError):
            mesh.get_mesh_verts_faces(0.2)

    def test_get_bounding_boxes(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        for (V, F) in [(10, 100)]:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
874
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
            verts_list.append(verts)
            faces_list.append(faces)

        mins = torch.min(verts, dim=0)[0]
        maxs = torch.max(verts, dim=0)[0]
        bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0)
        mesh = Meshes(verts=verts_list, faces=faces_list)
        bboxes = mesh.get_bounding_boxes()
        self.assertClose(bboxes_gt, bboxes)

    def test_padded_to_packed_idx(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200), (30, 300)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
892
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
893
894
895
896
897
898
899
900
901
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)
        verts_padded_to_packed_idx = mesh.verts_padded_to_packed_idx()
        verts_packed = mesh.verts_packed()
        verts_padded = mesh.verts_padded()
        verts_padded_flat = verts_padded.view(-1, 3)

902
        self.assertClose(verts_padded_flat[verts_padded_to_packed_idx], verts_packed)
facebook-github-bot's avatar
facebook-github-bot committed
903
904
905
906
907
908
909
910
911
912
913

        idx = verts_padded_to_packed_idx.view(-1, 1).expand(-1, 3)
        self.assertClose(verts_padded_flat.gather(0, idx), verts_packed)

    def test_getitem(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200), (30, 300)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
914
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)

        def check_equal(selected, indices):
            for selectedIdx, index in enumerate(indices):
                self.assertClose(
                    selected.verts_list()[selectedIdx], mesh.verts_list()[index]
                )
                self.assertClose(
                    selected.faces_list()[selectedIdx], mesh.faces_list()[index]
                )

        # int index
        index = 1
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == 1)
        check_equal(mesh_selected, [index])

        # list index
        index = [1, 2]
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == len(index))
        check_equal(mesh_selected, index)

        # slice index
        index = slice(0, 2, 1)
        mesh_selected = mesh[index]
        check_equal(mesh_selected, [0, 1])

        # bool tensor
        index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device)
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == index.sum())
        check_equal(mesh_selected, [0, 2])

        # int tensor
        index = torch.tensor([1, 2], dtype=torch.int64, device=device)
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == index.numel())
        check_equal(mesh_selected, index.tolist())

        # invalid index
        index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        with self.assertRaises(IndexError):
            mesh_selected = mesh[index]
        index = 1.2
        with self.assertRaises(IndexError):
            mesh_selected = mesh[index]

    def test_compute_faces_areas(self):
        verts = torch.tensor(
            [
                [0.0, 0.0, 0.0],
                [0.5, 0.0, 0.0],
                [0.5, 0.5, 0.0],
                [0.5, 0.0, 0.0],
                [0.25, 0.8, 0.0],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor([[0, 1, 2], [0, 3, 4]], dtype=torch.int64)
        mesh = Meshes(verts=[verts], faces=[faces])

        face_areas = mesh.faces_areas_packed()
        expected_areas = torch.tensor([0.125, 0.2])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
982
        self.assertClose(face_areas, expected_areas)
facebook-github-bot's avatar
facebook-github-bot committed
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

    def test_compute_normals(self):

        # Simple case with one mesh where normals point in either +/- ijk
        verts = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.6, 0.8, 0.0],
                [0.0, 0.3, 0.2],
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
                [0.5, 0.0, 0.2],
                [0.6, 0.0, 0.5],
                [0.8, 0.0, 0.7],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor(
            [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=torch.int64
        )
        mesh = Meshes(verts=[verts], faces=[faces])
1008
        self.assertFalse(mesh.has_verts_normals())
facebook-github-bot's avatar
facebook-github-bot committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
        verts_normals_expected = torch.tensor(
            [
                [0.0, 0.0, 1.0],
                [0.0, 0.0, 1.0],
                [0.0, 0.0, 1.0],
                [-1.0, 0.0, 0.0],
                [-1.0, 0.0, 0.0],
                [-1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ]
        )
        faces_normals_expected = verts_normals_expected[[0, 3, 6, 9], :]

        self.assertTrue(
            torch.allclose(mesh.verts_normals_list()[0], verts_normals_expected)
        )
1030
        self.assertTrue(mesh.has_verts_normals())
facebook-github-bot's avatar
facebook-github-bot committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
        self.assertTrue(
            torch.allclose(mesh.faces_normals_list()[0], faces_normals_expected)
        )
        self.assertTrue(
            torch.allclose(mesh.verts_normals_packed(), verts_normals_expected)
        )
        self.assertTrue(
            torch.allclose(mesh.faces_normals_packed(), faces_normals_expected)
        )

        # Multiple meshes in the batch with equal sized meshes
        meshes_extended = mesh.extend(3)
        for m in meshes_extended.verts_normals_list():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1044
            self.assertClose(m, verts_normals_expected)
facebook-github-bot's avatar
facebook-github-bot committed
1045
        for f in meshes_extended.faces_normals_list():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1046
            self.assertClose(f, faces_normals_expected)
facebook-github-bot's avatar
facebook-github-bot committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

        # Multiple meshes in the batch with different sized meshes
        # Check padded and packed normals are the correct sizes.
        verts2 = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.6, 0.8, 0.0],
                [0.0, 0.3, 0.2],
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
            ],
            dtype=torch.float32,
        )
        faces2 = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.int64)
        verts_list = [verts, verts2]
        faces_list = [faces, faces2]
        meshes = Meshes(verts=verts_list, faces=faces_list)
        verts_normals_padded = meshes.verts_normals_padded()
        faces_normals_padded = meshes.faces_normals_padded()

        for n in range(len(meshes)):
            v = verts_list[n].shape[0]
            f = faces_list[n].shape[0]
            if verts_normals_padded.shape[1] > v:
                self.assertTrue(verts_normals_padded[n, v:, :].eq(0).all())
                self.assertTrue(
                    torch.allclose(
                        verts_normals_padded[n, :v, :].view(-1, 3),
                        verts_normals_expected[:v, :],
                    )
                )
            if faces_normals_padded.shape[1] > f:
                self.assertTrue(faces_normals_padded[n, f:, :].eq(0).all())
                self.assertTrue(
                    torch.allclose(
                        faces_normals_padded[n, :f, :].view(-1, 3),
                        faces_normals_expected[:f, :],
                    )
                )

        verts_normals_packed = meshes.verts_normals_packed()
        faces_normals_packed = meshes.faces_normals_packed()
        self.assertTrue(
1091
            list(verts_normals_packed.shape) == [verts.shape[0] + verts2.shape[0], 3]
facebook-github-bot's avatar
facebook-github-bot committed
1092
1093
        )
        self.assertTrue(
1094
            list(faces_normals_packed.shape) == [faces.shape[0] + faces2.shape[0], 3]
facebook-github-bot's avatar
facebook-github-bot committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
        )

        # Single mesh where two faces share one vertex so the normal is
        # the weighted sum of the two face normals.
        verts = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.0, 0.3, 0.2],  # vertex is shared between two faces
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor([[0, 1, 2], [2, 3, 4]], dtype=torch.int64)
        mesh = Meshes(verts=[verts], faces=[faces])

        verts_normals_expected = torch.tensor(
            [
                [-0.2408, -0.9631, -0.1204],
                [-0.2408, -0.9631, -0.1204],
                [-0.9389, -0.3414, -0.0427],
                [-1.0000, 0.0000, 0.0000],
                [-1.0000, 0.0000, 0.0000],
            ]
        )
        faces_normals_expected = torch.tensor(
            [[-0.2408, -0.9631, -0.1204], [-1.0000, 0.0000, 0.0000]]
        )
        self.assertTrue(
            torch.allclose(
                mesh.verts_normals_list()[0], verts_normals_expected, atol=4e-5
            )
        )
        self.assertTrue(
            torch.allclose(
                mesh.faces_normals_list()[0], faces_normals_expected, atol=4e-5
            )
        )

        # Check empty mesh has empty normals
        meshes = Meshes(verts=[], faces=[])
        self.assertEqual(meshes.verts_normals_packed().shape[0], 0)
        self.assertEqual(meshes.verts_normals_padded().shape[0], 0)
        self.assertEqual(meshes.verts_normals_list(), [])
        self.assertEqual(meshes.faces_normals_packed().shape[0], 0)
        self.assertEqual(meshes.faces_normals_padded().shape[0], 0)
        self.assertEqual(meshes.faces_normals_list(), [])

1144
1145
1146
    def test_assigned_normals(self):
        verts = torch.rand(2, 6, 3)
        faces = torch.randint(6, size=(2, 4, 3))
1147
1148
        no_normals = Meshes(verts=verts, faces=faces)
        self.assertFalse(no_normals.has_verts_normals())
1149
1150
1151
1152
1153

        for verts_normals in [list(verts.unbind(0)), verts]:
            yes_normals = Meshes(
                verts=verts.clone(), faces=faces, verts_normals=verts_normals
            )
1154
            self.assertTrue(yes_normals.has_verts_normals())
1155
1156
1157
1158
1159
1160
            self.assertClose(yes_normals.verts_normals_padded(), verts)
            yes_normals.offset_verts_(torch.FloatTensor([1, 2, 3]))
            self.assertClose(yes_normals.verts_normals_padded(), verts)
            yes_normals.offset_verts_(torch.FloatTensor([1, 2, 3]).expand(12, 3))
            self.assertFalse(torch.allclose(yes_normals.verts_normals_padded(), verts))

facebook-github-bot's avatar
facebook-github-bot committed
1161
1162
1163
1164
    def test_compute_faces_areas_cpu_cuda(self):
        num_meshes = 10
        max_v = 100
        max_f = 300
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1165
        mesh_cpu = init_mesh(num_meshes, max_v, max_f, device="cpu")
facebook-github-bot's avatar
facebook-github-bot committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
        device = torch.device("cuda:0")
        mesh_cuda = mesh_cpu.to(device)

        face_areas_cpu = mesh_cpu.faces_areas_packed()
        face_normals_cpu = mesh_cpu.faces_normals_packed()
        face_areas_cuda = mesh_cuda.faces_areas_packed()
        face_normals_cuda = mesh_cuda.faces_normals_packed()
        self.assertClose(face_areas_cpu, face_areas_cuda.cpu(), atol=1e-6)
        # because of the normalization of the normals with arbitrarily small values,
        # normals can become unstable. Thus only compare normals, for faces
        # with areas > eps=1e-6
        nonzero = face_areas_cpu > 1e-6
        self.assertClose(
1179
            face_normals_cpu[nonzero], face_normals_cuda.cpu()[nonzero], atol=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
1180
1181
1182
1183
        )

    @staticmethod
    def compute_packed_with_init(
1184
        num_meshes: int = 10, max_v: int = 100, max_f: int = 300, device: str = "cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1185
    ):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1186
        mesh = init_mesh(num_meshes, max_v, max_f, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
        torch.cuda.synchronize()

        def compute_packed():
            mesh._compute_packed(refresh=True)
            torch.cuda.synchronize()

        return compute_packed

    @staticmethod
    def compute_padded_with_init(
1197
        num_meshes: int = 10, max_v: int = 100, max_f: int = 300, device: str = "cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1198
    ):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1199
        mesh = init_mesh(num_meshes, max_v, max_f, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1200
1201
1202
1203
1204
1205
1206
        torch.cuda.synchronize()

        def compute_padded():
            mesh._compute_padded(refresh=True)
            torch.cuda.synchronize()

        return compute_padded