test_perspective_n_points.py 4.63 KB
Newer Older
Roman Shapovalov's avatar
Roman Shapovalov committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import perspective_n_points
from pytorch3d.transforms import rotation_conversions


def reproj_error(x_world, y, R, T, weight=None):
    # applies the affine transform, projects, and computes the reprojection error
    y_hat = torch.matmul(x_world, R) + T[:, None, :]
    y_hat = y_hat / y_hat[..., 2:]
    if weight is None:
        weight = y.new_ones((1, 1))
    return (((weight[:, :, None] * (y - y_hat[..., :2])) ** 2).sum(dim=-1) ** 0.5).mean(
        dim=-1
    )


class TestPerspectiveNPoints(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

    def _run_and_print(self, x_world, y, R, T, print_stats, skip_q, check_output=False):
        sol = perspective_n_points.efficient_pnp(
            x_world, y.expand_as(x_world[:, :, :2]), skip_quadratic_eq=skip_q
        )

        err_2d = reproj_error(x_world, y, sol.R, sol.T)
        R_est_quat = rotation_conversions.matrix_to_quaternion(sol.R)
        R_quat = rotation_conversions.matrix_to_quaternion(R)

        num_pts = x_world.shape[-2]
        # quadratic part is more stable with fewer points
        num_pts_thresh = 5 if skip_q else 4
        if check_output and num_pts > num_pts_thresh:
            assert_msg = (
                f"test_perspective_n_points assertion failure for "
                f"n_points={num_pts}, "
                f"skip_quadratic={skip_q}, "
                f"no noise."
            )

            self.assertClose(err_2d, sol.err_2d, msg=assert_msg)
            self.assertTrue((err_2d < 1e-4).all(), msg=assert_msg)

            def norm_fn(t):
                return t.norm(dim=-1)

            self.assertNormsClose(
                T, sol.T[:, None, :], rtol=1e-2, norm_fn=norm_fn, msg=assert_msg
            )
            self.assertNormsClose(
                R_quat, R_est_quat, rtol=3e-4, norm_fn=norm_fn, msg=assert_msg
            )

        if print_stats:
            torch.set_printoptions(precision=5, sci_mode=False)
            for err_2d, err_3d, R_gt, T_gt in zip(
                sol.err_2d,
                sol.err_3d,
                torch.cat((sol.R, R), dim=-1),
                torch.stack((sol.T, T[:, 0, :]), dim=-1),
            ):
                print("2D Error: %1.4f" % err_2d.item())
                print("3D Error: %1.4f" % err_3d.item())
                print("R_hat | R_gt\n", R_gt)
                print("T_hat | T_gt\n", T_gt)

    def _testcase_from_2d(self, y, print_stats, benchmark, skip_q=False):
        x_cam = torch.cat((y, torch.rand_like(y[:, :1]) * 2.0 + 3.5), dim=1)
        x_cam[:, :2] *= x_cam[:, 2:]  # unproject

        R = rotation_conversions.random_rotations(16).to(y)
        T = torch.randn_like(R[:, :1, :])
        x_world = torch.matmul(x_cam - T, R.transpose(1, 2))

        if print_stats:
            print("Run without noise")

        if benchmark:  # return curried call
            torch.cuda.synchronize()

            def result():
                self._run_and_print(x_world, y, R, T, False, skip_q)
                torch.cuda.synchronize()

            return result

        self._run_and_print(x_world, y, R, T, print_stats, skip_q, check_output=True)

        # in the noisy case, there are no guarantees, so we check it doesn't crash
        if print_stats:
            print("Run with noise")
        x_world += torch.randn_like(x_world) * 0.1
        self._run_and_print(x_world, y, R, T, print_stats, skip_q)

    def case_with_gaussian_points(
        self, batch_size=10, num_pts=20, print_stats=False, benchmark=True, skip_q=False
    ):
        return self._testcase_from_2d(
            torch.randn((num_pts, 2)).cuda() / 3.0,
            print_stats=print_stats,
            benchmark=benchmark,
            skip_q=skip_q,
        )

    def test_perspective_n_points(self, print_stats=False):
        if print_stats:
            print("RUN ON A DENSE GRID")
        u = torch.linspace(-1.0, 1.0, 20)
        v = torch.linspace(-1.0, 1.0, 15)
        for skip_q in [False, True]:
            self._testcase_from_2d(
                torch.cartesian_prod(u, v).cuda(), print_stats, False, skip_q
            )

        for num_pts in range(6, 3, -1):
            for skip_q in [False, True]:
                if print_stats:
                    print(f"RUN ON {num_pts} points; skip_quadratic: {skip_q}")

                self.case_with_gaussian_points(
                    num_pts=num_pts,
                    print_stats=print_stats,
                    benchmark=False,
                    skip_q=skip_q,
                )