encoding_kernel.cu 8.69 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
#include <vector>
Hang Zhang's avatar
Hang Zhang committed
2
3
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
Hang Zhang's avatar
Hang Zhang committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

#include "common.h"
#include "device_tensor.h"

namespace {

template<typename DType, typename Acctype>
struct AggOp {
  __device__ AggOp(DeviceTensor<DType, 3> a,
                   DeviceTensor<DType, 3> x,
                   DeviceTensor<DType, 2> c) : A(a), X(x), C(c) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) {
    return ScalarConvert<DType, Acctype>::to(A[b][i][k] * (X[b][i][d] - C[k][d]));
  }
  DeviceTensor<DType, 3> A;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
};

template<typename DType, typename Acctype>
struct AggBackOp {
  __device__ AggBackOp(DeviceTensor<DType, 3> g,
                       DeviceTensor<DType, 3> x,
                       DeviceTensor<DType, 2> c) : G(g), X(x), C(c) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) {
    return ScalarConvert<DType, Acctype>::to(G[b][k][d] * (X[b][i][d] - C[k][d]));
  }
  DeviceTensor<DType, 3> G;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
};

template<typename DType, typename Acctype>
struct SL2Op {
  __device__ SL2Op(DeviceTensor<DType, 3> x,
                   DeviceTensor<DType, 2> c) : X(x), C(c) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) 
  {
      DType r = X[b][i][d] - C[k][d];
      return ScalarConvert<DType, Acctype>::to(r * r);
  }
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
};

template<typename DType, typename Acctype>
struct SL2GradXOp {
  __device__ SL2GradXOp(
    DeviceTensor<DType, 3> gsl,
    DeviceTensor<DType, 3> x,
    DeviceTensor<DType, 2> c,
    DeviceTensor<DType, 1> s
  ) : GSL(gsl), X(x), C(c), S(s) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) 
  {
    return ScalarConvert<DType, Acctype>::to(
      2 * S[k] * GSL[b][i][k] * (X[b][i][d]-C[k][d]));
  }
  DeviceTensor<DType, 3> GSL;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
  DeviceTensor<DType, 1> S;
};

template<typename DType, typename Acctype>
__global__ void Aggregate_Forward_kernel (
    DeviceTensor<DType, 3> E,
    DeviceTensor<DType, 3> A,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C) {
  /* declarations of the variables */
  int b, k, d, N;
  /* Get the index and channels */ 
  b = blockIdx.z;
  d = blockIdx.x;
  k = blockIdx.y;
  N = X.getSize(1);
  /* main operation */
Hang Zhang's avatar
Hang Zhang committed
82
  AggOp<DType, Acctype> g(A, X, C);
Hang Zhang's avatar
Hang Zhang committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
  E[b][k][d] = reduceN<Acctype>(g, b, k, d, N);
}

template<typename DType, typename Acctype>
__global__ void Aggregate_Backward_kernel (
    DeviceTensor<DType, 3> GA,
    DeviceTensor<DType, 3> GE,
    DeviceTensor<DType, 3> A,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C) {
  /* declarations of the variables */
  int b, k, i, D;
  /* Get the index and channels */ 
  b = blockIdx.z;
  i = blockIdx.y;
  k = blockIdx.x;
  D = GE.getSize(2);
  /* main operation */
Hang Zhang's avatar
Hang Zhang committed
101
  AggBackOp<DType, Acctype> g(GE, X, C);
Hang Zhang's avatar
Hang Zhang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  GA[b][i][k] = reduceD<Acctype>(g, b, i, k, D);
}

template<typename DType, typename Acctype>
__global__ void ScaledL2_Forward_kernel (
    DeviceTensor<DType, 3> SL,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 1> S) {
  /* declarations of the variables */
  int b, k, i, D;
  /* Get the index and channels */ 
  b = blockIdx.z;
  k = blockIdx.x;
  i = blockIdx.y;
  D = X.getSize(2);
  /* main operation */
  SL2Op<DType, Acctype> g(X,C);
  SL[b][i][k] = S[k] * reduceD<Acctype>(g,b,i,k,D);;
}

template<typename DType, typename Acctype>
__global__ void ScaledL2_GradX_kernel (
    DeviceTensor<DType, 3> GSL,
    DeviceTensor<DType, 3> GX,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 1> S) {
  /* declarations of the variables */
  int b, d, i, K;
  /* Get the index and channels */ 
  b = blockIdx.z;
  d = blockIdx.x;
  i = blockIdx.y;
  K = C.getSize(0);
  /* main operation */
  SL2GradXOp<DType, Acctype> g(GSL,X,C,S);
  GX[b][i][d] = reduceK<Acctype>(g,b,i,d,K);
}

template<typename DType, typename Acctype>
__global__ void ScaledL2_GradC_kernel (
    DeviceTensor<DType, 3> GSL,
    DeviceTensor<DType, 2> GC,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 1> S) {
  /* declarations of the variables */
  int k, d, B, N;
  /* Get the index and channels */ 
  d = blockIdx.x;
  k = blockIdx.y;
  B = X.getSize(0);
  N = X.getSize(1);
  /* main operation */
  SL2GradXOp<DType, Acctype> g(GSL,X,C,S);
  GC[k][d] = - reduceBN<Acctype>(g, k, d, B, N);
}

}// namespace

at::Tensor Aggregate_Forward_CUDA(
    const at::Tensor A_,
    const at::Tensor X_,
    const at::Tensor C_) {
  /* Device tensors */
  auto E_ = A_.type().tensor({A_.size(0), C_.size(0), C_.size(1)}).zero_(); 
Hang Zhang's avatar
Hang Zhang committed
169
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
Hang Zhang's avatar
Hang Zhang committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  // B, K, D
  dim3 blocks(C_.size(1), C_.size(0), X_.size(0));
  dim3 threads(getNumThreads(X_.size(1)));

  AT_DISPATCH_FLOATING_TYPES(A_.type(), "Aggregate_Forward_CUDA", ([&] {
    DeviceTensor<scalar_t, 3> E = devicetensor<scalar_t, 3>(E_);
    DeviceTensor<scalar_t, 3> A = devicetensor<scalar_t, 3>(A_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    /* kernel function */
    Aggregate_Forward_kernel<scalar_t, scalar_t>
      <<<blocks, threads, 0, stream>>>(E, A, X, C);
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return E_;
}

std::vector<at::Tensor> Aggregate_Backward_CUDA(
    const at::Tensor GE_,
    const at::Tensor A_,
    const at::Tensor X_,
    const at::Tensor C_) {
  auto gradA_ = at::zeros_like(A_);
  auto gradX_ = at::bmm(A_, GE_);
  auto gradC_ = (-GE_ * A_.sum(1).unsqueeze(2)).sum(0);
Hang Zhang's avatar
Hang Zhang committed
195
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
Hang Zhang's avatar
Hang Zhang committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  // B, K, D
  dim3 blocks(C_.size(0), X_.size(1), X_.size(0));
  dim3 threads(getNumThreads(C_.size(1)));
  AT_DISPATCH_FLOATING_TYPES(A_.type(), "Aggregate_Backward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> GA = devicetensor<scalar_t, 3>(gradA_);
    DeviceTensor<scalar_t, 3> GE = devicetensor<scalar_t, 3>(GE_);
    DeviceTensor<scalar_t, 3> A = devicetensor<scalar_t, 3>(A_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    Aggregate_Backward_kernel<scalar_t, scalar_t>
      <<<blocks, threads, 0, stream>>> (GA, GE, A, X, C);
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return {gradA_, gradX_, gradC_};
}

at::Tensor ScaledL2_Forward_CUDA(
    const at::Tensor X_,
    const at::Tensor C_,
    const at::Tensor S_) {
  auto SL_ = X_.type().tensor({X_.size(0), X_.size(1), C_.size(0)}).zero_();
Hang Zhang's avatar
Hang Zhang committed
218
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
Hang Zhang's avatar
Hang Zhang committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
  dim3 blocks(C_.size(0), X_.size(1), X_.size(0));
  dim3 threads(getNumThreads(C_.size(1)));

  AT_DISPATCH_FLOATING_TYPES(X_.type(), "ScaledL2_Forward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> SL = devicetensor<scalar_t, 3>(SL_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 1> S = devicetensor<scalar_t, 1>(S_);
    /* kernel function */
    ScaledL2_Forward_kernel<scalar_t, scalar_t>
      <<<blocks, threads, 0, stream>>> (SL, X, C, S);
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return SL_;
}

std::vector<at::Tensor> ScaledL2_Backward_CUDA(
    const at::Tensor GSL_,
    const at::Tensor X_,
    const at::Tensor C_,
    const at::Tensor S_,
    const at::Tensor SL_) {
  auto GX_ = at::zeros_like(X_);
  auto GC_ = at::zeros_like(C_);
  /* kernel function */
Hang Zhang's avatar
Hang Zhang committed
245
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
Hang Zhang's avatar
Hang Zhang committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  dim3 blocks1(X_.size(2), X_.size(1), X_.size(0));
  dim3 threads1(getNumThreads(C_.size(0)));
  dim3 blocks2(C_.size(1), C_.size(0));
  dim3 threads2(getNumThreads(X_.size(1)));
  auto GS_ = (GSL_ * (SL_ / S_.view({1, 1, C_.size(0)}))).sum(0).sum(0);
  AT_DISPATCH_FLOATING_TYPES(X_.type(), "ScaledL2_Backward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> GSL = devicetensor<scalar_t, 3>(GSL_);
    DeviceTensor<scalar_t, 3> GX = devicetensor<scalar_t, 3>(GX_);
    DeviceTensor<scalar_t, 2> GC = devicetensor<scalar_t, 2>(GC_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 1> S = devicetensor<scalar_t, 1>(S_);
    ScaledL2_GradX_kernel<scalar_t, scalar_t>
      <<<blocks1, threads1, 0, stream>>> (GSL, GX, X, C, S);
    AT_ASSERT(cudaGetLastError() == cudaSuccess);
    ScaledL2_GradC_kernel<scalar_t, scalar_t>
      <<<blocks2, threads2, 0, stream>>> (GSL, GC, X, C, S);
    AT_ASSERT(cudaGetLastError() == cudaSuccess);
  }));
  return {GX_, GC_, GS_};
}