common.h 6 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include <cuda.h>
#include <cuda_runtime.h>

static const unsigned WARP_SIZE = 32;

// The maximum number of threads in a block
static const unsigned MAX_BLOCK_SIZE = 512U;

template<typename In, typename Out>
struct ScalarConvert {
  static __host__ __device__ __forceinline__ Out to(const In v) { return (Out) v; }
};

// Number of threads in a block given an input size up to MAX_BLOCK_SIZE
static int getNumThreads(int nElem) {
  int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
  for (int i = 0; i != 5; ++i) {
    if (nElem <= threadSizes[i]) {
      return threadSizes[i];
    }
  }
  return MAX_BLOCK_SIZE;
}

// Returns the index of the most significant 1 bit in `val`.
__device__ __forceinline__ int getMSB(int val) {
  return 31 - __clz(val);
}

template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
    return __shfl_xor_sync(mask, value, laneMask, width);
#else
    return __shfl_xor(value, laneMask, width);
#endif
}

// Sum across all threads within a warp
template <typename T>
static __device__ __forceinline__ T warpSum(T val) {
#if __CUDA_ARCH__ >= 300
  for (int i = 0; i < getMSB(WARP_SIZE); ++i) {
    val += WARP_SHFL_XOR(val, 1 << i, WARP_SIZE);
  }
#else
  __shared__ T values[MAX_BLOCK_SIZE];
  values[threadIdx.x] = val;
  __threadfence_block();
  const int base = (threadIdx.x / WARP_SIZE) * WARP_SIZE;
  for (int i = 1; i < WARP_SIZE; i++) {
    val += values[base + ((i + threadIdx.x) % WARP_SIZE)];
  }
#endif
  return val;
}

template <typename DType, typename Acctype>
struct Float2 {
  Acctype v1, v2;
  __device__ Float2() {}
  __device__ Float2(DType v1, DType v2) : v1(ScalarConvert<DType, Acctype>::to(v1)), v2(ScalarConvert<DType, Acctype>::to(v2)) {}
  __device__ Float2(DType v) : v1(ScalarConvert<DType, Acctype>::to(v)), v2(ScalarConvert<DType, Acctype>::to(v)) {}
  __device__ Float2(int v) : v1(ScalarConvert<int, Acctype>::to(v)), v2(ScalarConvert<int, Acctype>::to(v)) {}
  __device__ Float2& operator+=(const Float2& a) {
    v1 += a.v1;
    v2 += a.v2;
    return *this;
  }
};

template <typename DType, typename Acctype>
static __device__ __forceinline__ Float2<DType, Acctype> warpSum(Float2<DType, Acctype> value) {
  value.v1 = warpSum(value.v1);
  value.v2 = warpSum(value.v2);
  return value;
}

Hang Zhang's avatar
Hang Zhang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
template<typename T, typename Op>
__device__ T reduceD(
    Op op, int b, int i, int k, int D) {
  T sum = 0;
  for (int x = threadIdx.x; x < D; x += blockDim.x) {
      sum += op(b,i,k,x);
  }
  // sum over NumThreads within a warp
  sum = warpSum(sum);

  // 'transpose', and reduce within warp again
  __shared__ T shared[32];

  __syncthreads();
  if (threadIdx.x % WARP_SIZE == 0) {
      if (threadIdx.x / WARP_SIZE < 32) {
              shared[threadIdx.x / WARP_SIZE] = sum;
      }
  }
  if (threadIdx.x >= blockDim.x / WARP_SIZE && threadIdx.x < WARP_SIZE) {
      // zero out the other entries in shared
      shared[threadIdx.x] = (T) 0;
  }
  __syncthreads();
  if (threadIdx.x / WARP_SIZE == 0) {
      sum = warpSum(shared[threadIdx.x]);
      if (threadIdx.x == 0) {
          shared[0] = sum;
      }
  }
  __syncthreads();

  // Everyone picks it up, should be broadcast into the whole gradInput
  return shared[0];
}

template<typename T, typename Op>
__device__ T reduceN(
    Op op, int b, int k, int d, int N) {
  T sum = 0;
  for (int x = threadIdx.x; x < N; x += blockDim.x) {
      sum += op(b,x,k,d);
  }
  // sum over NumThreads within a warp
  sum = warpSum(sum);

  // 'transpose', and reduce within warp again
  __shared__ T shared[32];

  __syncthreads();
  if (threadIdx.x % WARP_SIZE == 0) {
      if (threadIdx.x / WARP_SIZE < 32) {
              shared[threadIdx.x / WARP_SIZE] = sum;
      }
  }
  if (threadIdx.x >= blockDim.x / WARP_SIZE && threadIdx.x < WARP_SIZE) {
      // zero out the other entries in shared
      shared[threadIdx.x] = (T) 0;
  }
  __syncthreads();
  if (threadIdx.x / WARP_SIZE == 0) {
      sum = warpSum(shared[threadIdx.x]);
      if (threadIdx.x == 0) {
          shared[0] = sum;
      }
  }
  __syncthreads();

  // Everyone picks it up, should be broadcast into the whole gradInput
  return shared[0];
}

template<typename T, typename Op>
__device__ T reduceK(
    Op op, int b, int i, int d, int K) {
  T sum = 0;
  for (int x = threadIdx.x; x < K; x += blockDim.x) {
    sum += op(b,i,x,d);
  }
  // sum over NumThreads within a warp
  sum = warpSum(sum);

  // 'transpose', and reduce within warp again
  __shared__ T shared[32];

  __syncthreads();
  if (threadIdx.x % WARP_SIZE == 0) {
    if (threadIdx.x / WARP_SIZE < 32) {
            shared[threadIdx.x / WARP_SIZE] = sum;
    }
  }
  if (threadIdx.x >= blockDim.x / WARP_SIZE && threadIdx.x < WARP_SIZE) {
    // zero out the other entries in shared
    shared[threadIdx.x] = (T) 0;
  }
  __syncthreads();
  if (threadIdx.x / WARP_SIZE == 0) {
    sum = warpSum(shared[threadIdx.x]);
    if (threadIdx.x == 0) {
      shared[0] = sum;
    }
  }
  __syncthreads();

  // Everyone picks it up, should be broadcast into the whole gradInput
  return shared[0];
}

template<typename T, typename Op>
__device__ T reduceBN(
    Op op, 
    int k, int d, int B, int N) {
  T sum = 0;
  for (int batch = 0; batch < B; ++batch) {
    for (int x = threadIdx.x; x < N; x += blockDim.x) {
        sum += op(batch,x,k,d);
    }
  }
  // sum over NumThreads within a warp
  sum = warpSum(sum);
  // 'transpose', and reduce within warp again
  __shared__ T shared[32];

  __syncthreads();
  if (threadIdx.x % WARP_SIZE == 0) {
    if (threadIdx.x / WARP_SIZE < 32) {
            shared[threadIdx.x / WARP_SIZE] = sum;
    }
  }
  if (threadIdx.x >= blockDim.x / WARP_SIZE && threadIdx.x < WARP_SIZE) {
    // zero out the other entries in shared
    shared[threadIdx.x] = (T) 0;
  }
  __syncthreads();
  if (threadIdx.x / WARP_SIZE == 0) {
    sum = warpSum(shared[threadIdx.x]);
    if (threadIdx.x == 0) {
      shared[0] = sum;
    }
  }
  __syncthreads();

  // Everyone picks it up, should be broadcast into the whole gradInput
  return shared[0];
}