"examples/distributed/vscode:/vscode.git/clone" did not exist on "020259895384a1f99844ce6e04f0a226d7b3210b"
pascal_voc.py 3.2 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import os
import random
import numpy as np
from PIL import Image, ImageOps, ImageFilter
from tqdm import tqdm

import torch
from .base import BaseDataset

class VOCSegmentation(BaseDataset):
    CLASSES = [
        'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 
        'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
        'motorbike', 'person', 'potted-plant', 'sheep', 'sofa', 'train',
        'tv/monitor', 'ambigious'
    ]
    NUM_CLASS = 21
    BASE_DIR = 'VOCdevkit/VOC2012'
Hang Zhang's avatar
Hang Zhang committed
19
20
    def __init__(self, root=os.path.expanduser('~/.encoding/data'), split='train',
                 mode=None, transform=None, target_transform=None, **kwargs):
Hang Zhang's avatar
Hang Zhang committed
21
22
        super(VOCSegmentation, self).__init__(root, split, mode, transform,
                                              target_transform, **kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        _voc_root = os.path.join(self.root, self.BASE_DIR)
        _mask_dir = os.path.join(_voc_root, 'SegmentationClass')
        _image_dir = os.path.join(_voc_root, 'JPEGImages')
        # train/val/test splits are pre-cut
        _splits_dir = os.path.join(_voc_root, 'ImageSets/Segmentation')
        if self.mode == 'train':
            _split_f = os.path.join(_splits_dir, 'trainval.txt')
        elif self.mode == 'val':
            _split_f = os.path.join(_splits_dir, 'val.txt')
        elif self.mode == 'test':
            _split_f = os.path.join(_splits_dir, 'test.txt')
        else:
            raise RuntimeError('Unknown dataset split.')
        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), "r") as lines:
            for line in tqdm(lines):
                _image = os.path.join(_image_dir, line.rstrip('\n')+".jpg")
                assert os.path.isfile(_image)
                self.images.append(_image)
                if self.mode != 'test':
                    _mask = os.path.join(_mask_dir, line.rstrip('\n')+".png")
                    assert os.path.isfile(_mask)
                    self.masks.append(_mask)

        if self.mode != 'test':
            assert (len(self.images) == len(self.masks))

    def __getitem__(self, index):
        img = Image.open(self.images[index]).convert('RGB')
        if self.mode == 'test':
            if self.transform is not None:
                img = self.transform(img)
            return img, os.path.basename(self.images[index])
        target = Image.open(self.masks[index])
        # synchrosized transform
        if self.mode == 'train':
            img, target = self._sync_transform( img, target)
        elif self.mode == 'val':
            img, target = self._val_sync_transform( img, target)
        else:
            assert self.mode == 'testval'
            mask = self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

    def _mask_transform(self, mask):
        target = np.array(mask).astype('int32')
        target[target == 255] = -1
        return torch.from_numpy(target).long()

    def __len__(self):
        return len(self.images)
Hang Zhang's avatar
Hang Zhang committed
80
81
82
83

    @property
    def pred_offset(self):
        return 0