coco.py 4.3 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
import os
from tqdm import trange
from PIL import Image, ImageOps, ImageFilter
import numpy as np
import torch

from .base import BaseDataset

class COCOSegmentation(BaseDataset):
Hang Zhang's avatar
Hang Zhang committed
10
11
12
    NUM_CLASS = 21
    CAT_LIST = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4,
        1, 64, 20, 63, 7, 72]
Hang Zhang's avatar
Hang Zhang committed
13
    def __init__(self, root=os.path.expanduser('~/.encoding/data'), split='train',
Hang Zhang's avatar
Hang Zhang committed
14
                 mode=None, transform=None, target_transform=None, **kwargs):
Hang Zhang's avatar
Hang Zhang committed
15
        super(COCOSegmentation, self).__init__(
Hang Zhang's avatar
Hang Zhang committed
16
            root, split, mode, transform, target_transform, **kwargs)
Hang Zhang's avatar
Hang Zhang committed
17
18
        from pycocotools.coco import COCO
        from pycocotools import mask
Hang Zhang's avatar
Hang Zhang committed
19
        if split == 'train':
Hang Zhang's avatar
Hang Zhang committed
20
            print('train set')
Hang Zhang's avatar
Hang Zhang committed
21
22
23
            ann_file = os.path.join(root, 'annotations/instances_train2017.json')
            ids_file = os.path.join(root, 'annotations/train_ids.pth')
            self.root = os.path.join(root, 'train2017')
Hang Zhang's avatar
Hang Zhang committed
24
25
        else:
            print('val set')
Hang Zhang's avatar
Hang Zhang committed
26
27
28
            ann_file = os.path.join(root, 'annotations/instances_val2017.json')
            ids_file = os.path.join(root, 'annotations/val_ids.pth')
            self.root = os.path.join(root, 'val2017')
Hang Zhang's avatar
Hang Zhang committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        self.coco = COCO(ann_file)
        self.coco_mask = mask
        if os.path.exists(ids_file):
            self.ids = torch.load(ids_file)
        else:
            ids = list(self.coco.imgs.keys())
            self.ids = self._preprocess(ids, ids_file)
        self.transform = transform
        self.target_transform = target_transform

    def __getitem__(self, index):
        coco = self.coco
        img_id = self.ids[index]
        img_metadata = coco.loadImgs(img_id)[0]
        path = img_metadata['file_name']
        img = Image.open(os.path.join(self.root, path)).convert('RGB')
        cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id))
Hang Zhang's avatar
Hang Zhang committed
46
47
        mask = Image.fromarray(self._gen_seg_mask(
            cocotarget, img_metadata['height'], img_metadata['width']))
Hang Zhang's avatar
Hang Zhang committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            mask = self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            mask = self.target_transform(mask)
        return img, mask

    def __len__(self):
        return len(self.ids)

    def _gen_seg_mask(self, target, h, w):
        mask = np.zeros((h, w), dtype=np.uint8)
        coco_mask = self.coco_mask
        for instance in target:
            rle = coco_mask.frPyObjects(instance['segmentation'], h, w)
            m = coco_mask.decode(rle)
            cat = instance['category_id']
Hang Zhang's avatar
Hang Zhang committed
73
74
            if cat in self.CAT_LIST:
                c = self.CAT_LIST.index(cat)
Hang Zhang's avatar
Hang Zhang committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            else:
                continue
            if len(m.shape) < 3:
                mask[:, :] += (mask == 0) * (m * c)
            else:
                mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(np.uint8)
        return mask

    def _preprocess(self, ids, ids_file):
        print("Preprocessing mask, this will take a while." + \
            "But don't worry, it only run once for each split.")
        tbar = trange(len(ids))
        new_ids = []
        for i in tbar:
            img_id = ids[i]
            cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))
            img_metadata = self.coco.loadImgs(img_id)[0]
            mask = self._gen_seg_mask(cocotarget, img_metadata['height'], 
                                      img_metadata['width'])
            # more than 1k pixels
            if (mask > 0).sum() > 1000:
                new_ids.append(img_id)
            tbar.set_description('Doing: {}/{}, got {} qualified images'.\
                format(i, len(ids), len(new_ids)))
        print('Found number of qualified images: ', len(new_ids))
        torch.save(new_ids, ids_file)
        return new_ids
Hang Zhang's avatar
Hang Zhang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
NUM_CHANNEL = 91
[] background
[5] airplane
[2] bicycle
[16] bird
[9] boat
[44] bottle
[6] bus
[3] car
[17] cat
[62] chair
[21] cow
[67] dining table
[18] dog
[19] horse
[4] motorcycle
[1] person
[64] potted plant
[20] sheep
[63] couch
[7] train
[72] tv
"""