minc.py 2.11 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import os
from PIL import Image

import torch
import torch.utils.data as data

class MINCDataset(data.Dataset):
    NUM_CLASS = 23
Hang Zhang's avatar
Hang Zhang committed
19
20
21
22
    def __init__(self, root=os.path.expanduser('~/.encoding/data/'),
                 train=True, transform=None, download=None):
        split='train' if train == True else 'val'
        root = os.path.join(root, 'minc-2500')
Hang Zhang's avatar
Hang Zhang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        self.transform = transform
        classes, class_to_idx = find_classes(root + '/images')
        if split=='train':
            filename = os.path.join(root, 'labels/train1.txt')
        else:
            filename = os.path.join(root, 'labels/test1.txt')

        self.images, self.labels = make_dataset(filename, root, 
            class_to_idx)
        assert (len(self.images) == len(self.labels))

    def __getitem__(self, index):
        _img = Image.open(self.images[index]).convert('RGB')
        _label = self.labels[index]
        if self.transform is not None:
            _img = self.transform(_img)

        return _img, _label

    def __len__(self):
        return len(self.images)

def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def make_dataset(filename, datadir, class_to_idx):
    images = []
    labels = []
    with open(os.path.join(filename), "r") as lines:
        for line in lines:
            _image = os.path.join(datadir, line.rstrip('\n'))
            _dirname = os.path.split(os.path.dirname(_image))[1]
            assert os.path.isfile(_image)
            label = class_to_idx[_dirname]
            images.append(_image)
            labels.append(label)

    return images, labels