pascal_aug.py 2.83 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import os
import random
import scipy.io
import numpy as np
from PIL import Image, ImageOps, ImageFilter

from .base import BaseDataset

class VOCAugSegmentation(BaseDataset):
    voc = [
        'background', 'airplane', 'bicycle', 'bird', 'boat', 'bottle', 
        'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
        'motorcycle', 'person', 'potted-plant', 'sheep', 'sofa', 'train',
        'tv'
    ]
    NUM_CLASS = 21
    TRAIN_BASE_DIR = 'VOCaug/dataset/'
    def __init__(self, root, split='train', mode=None, transform=None, 
Hang Zhang's avatar
Hang Zhang committed
19
20
21
                 target_transform=None, **kwargs):
        super(VOCAugSegmentation, self).__init__(root, split, mode, transform,
                                                 target_transform, **kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        # train/val/test splits are pre-cut
        _voc_root = os.path.join(root, self.TRAIN_BASE_DIR)
        _mask_dir = os.path.join(_voc_root, 'cls')
        _image_dir = os.path.join(_voc_root, 'img')
        if self.mode == 'train':
            _split_f = os.path.join(_voc_root, 'trainval.txt')
        elif self.mode == 'val':
            _split_f = os.path.join(_voc_root, 'val.txt')
        else:
            raise RuntimeError('Unknown dataset split.')
        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), "r") as lines:
            for line in lines:
                _image = os.path.join(_image_dir, line.rstrip('\n')+".jpg")
                assert os.path.isfile(_image)
                self.images.append(_image)
                if self.mode != 'test':
                    _mask = os.path.join(_mask_dir, line.rstrip('\n')+".mat")
                    assert os.path.isfile(_mask)
                    self.masks.append(_mask)

        assert (len(self.images) == len(self.masks))

    def __getitem__(self, index):
        _img = Image.open(self.images[index]).convert('RGB')
        if self.mode == 'test':
            if self.transform is not None:
                _img = self.transform(_img)
            return _img, os.path.basename(self.images[index])
        _target = self._load_mat(self.masks[index])
        # synchrosized transform
        if self.mode == 'train':
            _img, _target = self._sync_transform( _img, _target)
        elif self.mode == 'val':
            _img, _target = self._val_sync_transform( _img, _target)
        # general resize, normalize and toTensor
        if self.transform is not None:
            _img = self.transform(_img)
        if self.target_transform is not None:
            _target = self.target_transform(_target)
        return _img, _target
    
    def _load_mat(self, filename):
        mat = scipy.io.loadmat(filename, mat_dtype=True, squeeze_me=True, 
            struct_as_record=False)
        mask = mat['GTcls'].Segmentation
        return Image.fromarray(mask)

    def __len__(self):
        return len(self.images)