syncbn.py 9.78 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
Hang Zhang's avatar
sync BN  
Hang Zhang committed
8
## LICENSE file in the root directory of this source tree
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
sync BN  
Hang Zhang committed
11
"""Synchronized Cross-GPU Batch Normalization Module"""
Hang Zhang's avatar
Hang Zhang committed
12
import collections
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
13
14
import threading
import torch
Hang Zhang's avatar
sync BN  
Hang Zhang committed
15
from torch.nn import Module, Sequential, Conv1d, Conv2d, ConvTranspose2d, \
Hang Zhang's avatar
Hang Zhang committed
16
17
    ReLU, Sigmoid, MaxPool2d, AvgPool2d, AdaptiveAvgPool2d, Dropout2d, Linear, \
    DataParallel
Hang Zhang's avatar
Hang Zhang committed
18
from torch.nn.modules.batchnorm import _BatchNorm
Hang Zhang's avatar
Hang Zhang committed
19
20
from torch.nn.functional import batch_norm
from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
21

Hang Zhang's avatar
Hang Zhang committed
22
from ..functions import *
Hang Zhang's avatar
sync BN  
Hang Zhang committed
23
from ..parallel import allreduce
24
from .comm import SyncMaster
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
25

Hang Zhang's avatar
pylint  
Hang Zhang committed
26
27
28
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'BatchNorm3d', 'Module', 'Sequential', 'Conv1d',
           'Conv2d', 'ConvTranspose2d', 'ReLU', 'Sigmoid', 'MaxPool2d', 'AvgPool2d',
           'AdaptiveAvgPool2d', 'Dropout2d', 'Linear']
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
29

30
31
32
# Adapt from https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
_ChildMessage = collections.namedtuple('Message', ['sum', 'ssum', 'sum_size'])
_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])
Hang Zhang's avatar
Hang Zhang committed
33

Hang Zhang's avatar
Hang Zhang committed
34
class _SyncBatchNorm(_BatchNorm):
Hang Zhang's avatar
Hang Zhang committed
35
36
37
    def __init__(self, num_features, eps=1e-5, momentum=0.001, affine=True):
        super(_SyncBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine)

38
39
        self._sync_master = SyncMaster(self._data_parallel_master)

Hang Zhang's avatar
Hang Zhang committed
40
41
42
        self._is_parallel = False
        self._parallel_id = None
        self._slave_pipe = None
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
43
44

    def forward(self, input):
45
46
47
48
49
50
        # If it is not parallel computation or is in evaluation mode, use PyTorch's implementation.
        if not (self._is_parallel and self.training):
            return batch_norm(
                input, self.running_mean, self.running_var, self.weight, self.bias,
                self.training, self.momentum, self.eps)

Hang Zhang's avatar
Hang Zhang committed
51
        # Resize the input to (B, C, -1).
Hang Zhang's avatar
Hang Zhang committed
52
        input_shape = input.size()
53
        input = input.view(input.size(0), self.num_features, -1)
Hang Zhang's avatar
Hang Zhang committed
54
55
56
57
58
59

        # sum(x) and sum(x^2)
        N = input.size(0) * input.size(2)
        xsum, xsqsum = sum_square(input)

        # all-reduce for global sum(x) and sum(x^2)
60
61
62
63
64
65
        if self._parallel_id == 0:
            mean, inv_std = self._sync_master.run_master(_ChildMessage(xsum, xsqsum, N))
        else:
            mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(xsum, xsqsum, N))
        # forward
        return batchnormtrain(input, self.weight, self.bias, mean, 1.0/inv_std).view(input_shape)
Hang Zhang's avatar
Hang Zhang committed
66
67


68
69
70
    def __data_parallel_replicate__(self, ctx, copy_id):
        self._is_parallel = True
        self._parallel_id = copy_id
Hang Zhang's avatar
Hang Zhang committed
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        # parallel_id == 0 means master device.
        if self._parallel_id == 0:
            ctx.sync_master = self._sync_master
        else:
            self._slave_pipe = ctx.sync_master.register_slave(copy_id)

    def _data_parallel_master(self, intermediates):
        """Reduce the sum and square-sum, compute the statistics, and broadcast it."""

        # Always using same "device order" makes the ReduceAdd operation faster.
        # Thanks to:: Tete Xiao (http://tetexiao.com/)
        intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device())

        to_reduce = [i[1][:2] for i in intermediates]
        to_reduce = [j for i in to_reduce for j in i]  # flatten
        target_gpus = [i[1].sum.get_device() for i in intermediates]

        sum_size = sum([i[1].sum_size for i in intermediates])
        sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce)
        mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size)

        broadcasted = Broadcast.apply(target_gpus, mean, inv_std)

        outputs = []
        for i, rec in enumerate(intermediates):
            outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2])))

        return outputs

    def _compute_mean_std(self, sum_, ssum, size):
        """Compute the mean and standard-deviation with sum and square-sum. This method
        also maintains the moving average on the master device."""
        assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.'
        mean = sum_ / size
        sumvar = ssum - sum_ * mean
        unbias_var = sumvar / (size - 1)
        bias_var = sumvar / size

        self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data
        self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data

        return mean, bias_var.clamp(self.eps) ** -0.5
Hang Zhang's avatar
Hang Zhang committed
114
115
116
117
118
119
120
121


class BatchNorm1d(_SyncBatchNorm):
    r"""Please see the docs in :class:`encoding.nn.BatchNorm2d`"""
    def _check_input_dim(self, input):
        if input.dim() != 2 and input.dim() != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'
                             .format(input.dim()))
Hang Zhang's avatar
Hang Zhang committed
122
123
        super(BatchNorm2d, self)._check_input_dim(input)

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
124

Hang Zhang's avatar
Hang Zhang committed
125
class BatchNorm2d(_SyncBatchNorm):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
126
    r"""Cross-GPU Synchronized Batch normalization (SyncBN)
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
127

128
    Standard BN [1]_ implementation only normalize the data within each device (GPU).
Hang Zhang's avatar
sync BN  
Hang Zhang committed
129
130
    SyncBN normalizes the input within the whole mini-batch.
    We follow the sync-onece implmentation described in the paper [2]_ .
Hang Zhang's avatar
Hang Zhang committed
131
    Please see the design idea in the `notes <./notes/syncbn.html>`_.
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
132

Hang Zhang's avatar
Hang Zhang committed
133
    .. note::
134
135
136
        We adapt the awesome python API from another `PyTorch SyncBN Implementation
        <https://github.com/vacancy/Synchronized-BatchNorm-PyTorch>`_ and provide
        efficient CUDA backend.
Hang Zhang's avatar
Hang Zhang committed
137

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
138
139
    .. math::

Hang Zhang's avatar
sync BN  
Hang Zhang committed
140
        y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
141

Hang Zhang's avatar
Hang Zhang committed
142
    The mean and standard-deviation are calculated per-channel over
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
143
144
145
146
147
148
149
150
    the mini-batches and gamma and beta are learnable parameter vectors
    of size C (where C is the input size).

    During training, this layer keeps a running estimate of its computed mean
    and variance. The running sum is kept with a default momentum of 0.1.

    During evaluation, this running mean/variance is used for normalization.

Hang Zhang's avatar
sync BN  
Hang Zhang committed
151
152
153
    Because the BatchNorm is done over the `C` dimension, computing statistics
    on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
154
155
156
157
158
159
160
    Args:
        num_features: num_features from an expected input of
            size batch_size x num_features x height x width
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Default: 0.1
Hang Zhang's avatar
sync BN  
Hang Zhang committed
161
162
        affine: a boolean value that when set to ``True``, gives the layer learnable
            affine parameters. Default: ``True``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
163
164
165
166
167

    Shape:
        - Input: :math:`(N, C, H, W)`
        - Output: :math:`(N, C, H, W)` (same shape as input)

Hang Zhang's avatar
sync BN  
Hang Zhang committed
168
169
170
171
    Reference:
        .. [1] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." *ICML 2015*
        .. [2] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. "Context Encoding for Semantic Segmentation." *CVPR 2018*

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
172
    Examples:
Hang Zhang's avatar
Hang Zhang committed
173
174
        >>> m = BatchNorm2d(100)
        >>> net = torch.nn.DataParallel(m)
175
        >>> encoding.parallel.patch_replication_callback(net)
Hang Zhang's avatar
Hang Zhang committed
176
        >>> output = net(input)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
177
178
179
180
181
    """
    def _check_input_dim(self, input):
        if input.dim() != 4:
            raise ValueError('expected 4D input (got {}D input)'
                             .format(input.dim()))
Hang Zhang's avatar
Hang Zhang committed
182
183
        super(BatchNorm2d, self)._check_input_dim(input)

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
184

Hang Zhang's avatar
Hang Zhang committed
185
186
187
188
189
190
class BatchNorm3d(_SyncBatchNorm):
    r"""Please see the docs in :class:`encoding.nn.BatchNorm2d`"""
    def _check_input_dim(self, input):
        if input.dim() != 5:
            raise ValueError('expected 5D input (got {}D input)'
                             .format(input.dim()))
Hang Zhang's avatar
Hang Zhang committed
191
192
        super(BatchNorm3d, self)._check_input_dim(input)

Hang Zhang's avatar
sync BN  
Hang Zhang committed
193
194

class SharedTensor(object):
Hang Zhang's avatar
Hang Zhang committed
195
    """Shared Tensor for cross GPU all reduce operation"""
196
    def __init__(self, nGPUs, op):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
197
198
199
200
        self.mutex = threading.Lock()
        self.all_tasks_done = threading.Condition(self.mutex)
        self.nGPUs = nGPUs
        self._clear()
201
        self.op = op
Hang Zhang's avatar
sync BN  
Hang Zhang committed
202
203

    def _clear(self):
Hang Zhang's avatar
Hang Zhang committed
204
205
        self.N = 0
        self.dict = {}
Hang Zhang's avatar
sync BN  
Hang Zhang committed
206
207
208
        self.push_tasks = self.nGPUs
        self.reduce_tasks = self.nGPUs

209
    def __call__(self, *inputs):
Hang Zhang's avatar
Hang Zhang committed
210
211
        if self.nGPUs <= 1:
            return tuple(inputs)
Hang Zhang's avatar
Hang Zhang committed
212
        # push from device
Hang Zhang's avatar
sync BN  
Hang Zhang committed
213
214
215
        with self.mutex:
            if self.push_tasks == 0:
                self._clear()
Hang Zhang's avatar
Hang Zhang committed
216
217
218
219
            self.N += inputs[0]
            igpu = inputs[1]
            self.dict[igpu] = inputs[2:]
            #idx = self.nGPUs - self.push_tasks
Hang Zhang's avatar
sync BN  
Hang Zhang committed
220
221
222
223
224
225
            self.push_tasks -= 1
        with self.all_tasks_done:
            if self.push_tasks == 0:
                self.all_tasks_done.notify_all()
            while self.push_tasks:
                self.all_tasks_done.wait()
Hang Zhang's avatar
Hang Zhang committed
226
        # pull from device
Hang Zhang's avatar
sync BN  
Hang Zhang committed
227
        with self.mutex:
Hang Zhang's avatar
Hang Zhang committed
228
229
230
231
            if igpu == 0:
                assert(len(self.dict) == self.nGPUs)
                # flatten the tensors
                self.list = [t for i in range(len(self.dict)) for t in self.dict[i]]
232
                self.outlist = self.op(2, *self.list)
Hang Zhang's avatar
sync BN  
Hang Zhang committed
233
234
235
236
237
238
239
240
                self.reduce_tasks -= 1
            else:
                self.reduce_tasks -= 1
        with self.all_tasks_done:
            if self.reduce_tasks == 0:
                self.all_tasks_done.notify_all()
            while self.reduce_tasks:
                self.all_tasks_done.wait()
Hang Zhang's avatar
Hang Zhang committed
241
        # all reduce done
Hang Zhang's avatar
Hang Zhang committed
242
        return self.N, self.outlist[2*igpu], self.outlist[2*igpu+1]
Hang Zhang's avatar
sync BN  
Hang Zhang committed
243
244

    def __len__(self):
Hang Zhang's avatar
Hang Zhang committed
245
        return self.nGPUs
Hang Zhang's avatar
sync BN  
Hang Zhang committed
246
247
248

    def __repr__(self):
        return ('SharedTensor')
Hang Zhang's avatar
Hang Zhang committed
249