fcn.py 6.43 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################
from __future__ import division
import os
import numpy as np
import torch
import torch.nn as nn
Hang Zhang's avatar
Hang Zhang committed
11
12
from torch.nn.functional import interpolate
from ..nn import ConcurrentModule, SyncBatchNorm
Zhang's avatar
v0.4.2  
Zhang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

from .base import BaseNet

__all__ = ['FCN', 'get_fcn', 'get_fcn_resnet50_pcontext', 'get_fcn_resnet50_ade']

class FCN(BaseNet):
    r"""Fully Convolutional Networks for Semantic Segmentation

    Parameters
    ----------
    nclass : int
        Number of categories for the training dataset.
    backbone : string
        Pre-trained dilated backbone network type (default:'resnet50'; 'resnet50',
        'resnet101' or 'resnet152').
    norm_layer : object
        Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;


    Reference:

        Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks
        for semantic segmentation." *CVPR*, 2015

    Examples
    --------
    >>> model = FCN(nclass=21, backbone='resnet50')
    >>> print(model)
    """
Hang Zhang's avatar
Hang Zhang committed
42
43
    def __init__(self, nclass, backbone, aux=True, se_loss=False, with_global=False,
                 norm_layer=SyncBatchNorm, **kwargs):
Hang Zhang's avatar
Hang Zhang committed
44
        super(FCN, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer, **kwargs)
Hang Zhang's avatar
Hang Zhang committed
45
        self.head = FCNHead(2048, nclass, norm_layer, self._up_kwargs, with_global)
Zhang's avatar
v0.4.2  
Zhang committed
46
47
48
49
50
51
52
53
        if aux:
            self.auxlayer = FCNHead(1024, nclass, norm_layer)

    def forward(self, x):
        imsize = x.size()[2:]
        _, _, c3, c4 = self.base_forward(x)

        x = self.head(c4)
Hang Zhang's avatar
Hang Zhang committed
54
        x = interpolate(x, imsize, **self._up_kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
55
56
57
        outputs = [x]
        if self.aux:
            auxout = self.auxlayer(c3)
Hang Zhang's avatar
Hang Zhang committed
58
            auxout = interpolate(auxout, imsize, **self._up_kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
59
60
61
            outputs.append(auxout)
        return tuple(outputs)

Hang Zhang's avatar
Hang Zhang committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

class Identity(nn.Module):
    def __init__(self):
        super(Identity, self).__init__()

    def forward(self, x):
        return x

class GlobalPooling(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer, up_kwargs):
        super(GlobalPooling, self).__init__()
        self._up_kwargs = up_kwargs
        self.gap = nn.Sequential(nn.AdaptiveAvgPool2d(1),
                                 nn.Conv2d(in_channels, out_channels, 1, bias=False),
                                 norm_layer(out_channels),
                                 nn.ReLU(True))

    def forward(self, x):
        _, _, h, w = x.size()
        pool = self.gap(x)
        return interpolate(pool, (h,w), **self._up_kwargs)

Zhang's avatar
v0.4.2  
Zhang committed
84
85
        
class FCNHead(nn.Module):
Hang Zhang's avatar
Hang Zhang committed
86
    def __init__(self, in_channels, out_channels, norm_layer, up_kwargs={}, with_global=False):
Zhang's avatar
v0.4.2  
Zhang committed
87
88
        super(FCNHead, self).__init__()
        inter_channels = in_channels // 4
Hang Zhang's avatar
Hang Zhang committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        self._up_kwargs = up_kwargs
        if with_global:
            self.conv5 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
                                       norm_layer(inter_channels),
                                       nn.ReLU(),
                                       ConcurrentModule([
                                            Identity(),
                                            GlobalPooling(inter_channels, inter_channels,
                                                          norm_layer, self._up_kwargs),
                                       ]),
                                       nn.Dropout2d(0.1, False),
                                       nn.Conv2d(2*inter_channels, out_channels, 1))
        else:
            self.conv5 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
                                       norm_layer(inter_channels),
                                       nn.ReLU(),
                                       nn.Dropout2d(0.1, False),
                                       nn.Conv2d(inter_channels, out_channels, 1))
Zhang's avatar
v0.4.2  
Zhang committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    def forward(self, x):
        return self.conv5(x)


def get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False,
            root='~/.encoding/models', **kwargs):
    r"""FCN model from the paper `"Fully Convolutional Network for semantic segmentation"
    <https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf>`_
    Parameters
    ----------
    dataset : str, default pascal_voc
        The dataset that model pretrained on. (pascal_voc, ade20k)
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.
    Examples
    --------
    >>> model = get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False)
    >>> print(model)
    """
    # infer number of classes
Hang Zhang's avatar
Hang Zhang committed
130
    from ..datasets import datasets, acronyms
Hang Zhang's avatar
Hang Zhang committed
131
    model = FCN(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, root=root, **kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
132
133
134
    if pretrained:
        from .model_store import get_model_file
        model.load_state_dict(torch.load(
Hang Zhang's avatar
Hang Zhang committed
135
            get_model_file('fcn_%s_%s'%(backbone, acronyms[dataset]), root=root)))
Zhang's avatar
v0.4.2  
Zhang committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    return model

def get_fcn_resnet50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_fcn_resnet50_pcontext(pretrained=True)
    >>> print(model)
    """
Hang Zhang's avatar
Hang Zhang committed
155
    return get_fcn('pcontext', 'resnet50', pretrained, root=root, aux=False, **kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

def get_fcn_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_fcn_resnet50_ade(pretrained=True)
    >>> print(model)
    """
Hang Zhang's avatar
Hang Zhang committed
174
    return get_fcn('ade20k', 'resnet50', pretrained, root=root, **kwargs)