deeplab.py 5.15 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################
from __future__ import division
import os
import numpy as np
import torch
import torch.nn as nn
from torch.nn.functional import interpolate

from .base import BaseNet
from .fcn import FCNHead

class DeepLabV3(BaseNet):
    def __init__(self, nclass, backbone, aux=True, se_loss=False, norm_layer=nn.BatchNorm2d, **kwargs):
        super(DeepLabV3, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer, **kwargs)
        self.head = DeepLabV3Head(2048, nclass, norm_layer, self._up_kwargs)
        if aux:
            self.auxlayer = FCNHead(1024, nclass, norm_layer)

    def forward(self, x):
        _, _, h, w = x.size()
        _, _, c3, c4 = self.base_forward(x)

        outputs = []
        x = self.head(c4)
        x = interpolate(x, (h,w), **self._up_kwargs)
        outputs.append(x)
        if self.aux:
            auxout = self.auxlayer(c3)
            auxout = interpolate(auxout, (h,w), **self._up_kwargs)
            outputs.append(auxout)
        return tuple(outputs)


class DeepLabV3Head(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer, up_kwargs, atrous_rates=[12, 24, 36], **kwargs):
        super(DeepLabV3Head, self).__init__()
        inter_channels = in_channels // 8
        self.aspp = ASPP_Module(in_channels, atrous_rates, norm_layer, up_kwargs, **kwargs)
        self.block = nn.Sequential(
            nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False),
            norm_layer(inter_channels),
            nn.ReLU(True),
            nn.Dropout2d(0.1, False),
            nn.Conv2d(inter_channels, out_channels, 1))

    def forward(self, x):
        x = self.aspp(x)
        x = self.block(x)
        return x


def ASPPConv(in_channels, out_channels, atrous_rate, norm_layer):
    block = nn.Sequential(
        nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate,
                  dilation=atrous_rate, bias=False),
        norm_layer(out_channels),
        nn.ReLU(True))
    return block

class AsppPooling(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer, up_kwargs):
        super(AsppPooling, self).__init__()
        self._up_kwargs = up_kwargs
        self.gap = nn.Sequential(nn.AdaptiveAvgPool2d(1),
                                 nn.Conv2d(in_channels, out_channels, 1, bias=False),
                                 norm_layer(out_channels),
                                 nn.ReLU(True))

    def forward(self, x):
        _, _, h, w = x.size()
        pool = self.gap(x)
        return interpolate(pool, (h,w), **self._up_kwargs)

class ASPP_Module(nn.Module):
    def __init__(self, in_channels, atrous_rates, norm_layer, up_kwargs):
        super(ASPP_Module, self).__init__()
        out_channels = in_channels // 8
        rate1, rate2, rate3 = tuple(atrous_rates)
        self.b0 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            norm_layer(out_channels),
            nn.ReLU(True))
        self.b1 = ASPPConv(in_channels, out_channels, rate1, norm_layer)
        self.b2 = ASPPConv(in_channels, out_channels, rate2, norm_layer)
        self.b3 = ASPPConv(in_channels, out_channels, rate3, norm_layer)
        self.b4 = AsppPooling(in_channels, out_channels, norm_layer, up_kwargs)

        self.project = nn.Sequential(
            nn.Conv2d(5*out_channels, out_channels, 1, bias=False),
            norm_layer(out_channels),
            nn.ReLU(True),
            nn.Dropout2d(0.5, False))

    def forward(self, x):
        feat0 = self.b0(x)
        feat1 = self.b1(x)
        feat2 = self.b2(x)
        feat3 = self.b3(x)
        feat4 = self.b4(x)
        y = torch.cat((feat0, feat1, feat2, feat3, feat4), 1)
        return self.project(y)

def get_deeplab(dataset='pascal_voc', backbone='resnet50', pretrained=False,
            root='~/.encoding/models', **kwargs):
    acronyms = {
        'pascal_voc': 'voc',
        'pascal_aug': 'voc',
        'ade20k': 'ade',
    }
    # infer number of classes
    from ..datasets import datasets, VOCSegmentation, VOCAugSegmentation, ADE20KSegmentation
    model = DeepLabV3(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, root=root, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('deeplab_%s_%s'%(backbone, acronyms[dataset]), root=root)))
    return model

def get_deeplab_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_deeplab_resnet50_ade(pretrained=True)
    >>> print(model)
    """
    return get_deeplab('ade20k', 'resnet50', pretrained, root=root, **kwargs)