"vscode:/vscode.git/clone" did not exist on "38b9c0f82fb1c1d49ac6b96c835473f2b89f8b1f"
psp.py 3.06 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################
from __future__ import division
import os
import numpy as np
import torch
import torch.nn as nn
from torch.nn.functional import upsample

from .base import BaseNet
from .fcn import FCNHead
from ..nn import PyramidPooling

class PSP(BaseNet):
    def __init__(self, nclass, backbone, aux=True, se_loss=False, norm_layer=nn.BatchNorm2d, **kwargs):
Hang Zhang's avatar
Hang Zhang committed
19
        super(PSP, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer, **kwargs)
Hang Zhang's avatar
Hang Zhang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        self.head = PSPHead(2048, nclass, norm_layer, self._up_kwargs)
        if aux:
            self.auxlayer = FCNHead(1024, nclass, norm_layer)

    def forward(self, x):
        _, _, h, w = x.size()
        _, _, c3, c4 = self.base_forward(x)

        outputs = []
        x = self.head(c4)
        x = upsample(x, (h,w), **self._up_kwargs)
        outputs.append(x)
        if self.aux:
            auxout = self.auxlayer(c3)
            auxout = upsample(auxout, (h,w), **self._up_kwargs)
            outputs.append(auxout)
        return tuple(outputs)


class PSPHead(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer, up_kwargs):
        super(PSPHead, self).__init__()
        inter_channels = in_channels // 4
        self.conv5 = nn.Sequential(PyramidPooling(in_channels, norm_layer, up_kwargs),
                                   nn.Conv2d(in_channels * 2, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU(True),
                                   nn.Dropout2d(0.1, False),
                                   nn.Conv2d(inter_channels, out_channels, 1))

    def forward(self, x):
        return self.conv5(x)

def get_psp(dataset='pascal_voc', backbone='resnet50', pretrained=False,
            root='~/.encoding/models', **kwargs):
    acronyms = {
        'pascal_voc': 'voc',
        'pascal_aug': 'voc',
        'ade20k': 'ade',
    }
    # infer number of classes
Hang Zhang's avatar
Hang Zhang committed
61
    from ..datasets import datasets
Hang Zhang's avatar
Hang Zhang committed
62
    model = PSP(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, root=root, **kwargs)
Hang Zhang's avatar
Hang Zhang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    if pretrained:
        from .model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('psp_%s_%s'%(backbone, acronyms[dataset]), root=root)))
    return model

def get_psp_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_psp_resnet50_ade(pretrained=True)
    >>> print(model)
    """
Hang Zhang's avatar
Hang Zhang committed
86
    return get_psp('ade20k', 'resnet50', pretrained, root=root, **kwargs)