encodingv2_kernel.cu 15.1 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
#include <vector>
2
#include <torch/tensor.h>
Hang Zhang's avatar
Hang Zhang committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#include <ATen/ATen.h>
#include <ATen/Functions.h>
#include <ATen/cuda/CUDAContext.h>

#include "common.h"
#include "device_tensor.h"

namespace {

template<typename DType, typename Acctype>
struct KD2Op {
  __device__ KD2Op(DeviceTensor<DType, 3> x,
                   DeviceTensor<DType, 2> c,
                   DeviceTensor<DType, 2> std) : X(x), C(c), STD(std) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) 
  {
      DType r = (X[b][i][d] - C[k][d]) / STD[k][d];
      return ScalarConvert<DType, Acctype>::to(r * r);
  }
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
  DeviceTensor<DType, 2> STD;
};

template<typename DType, typename Acctype>
__global__ void Encoding_Dist_Forward_kernel (
    DeviceTensor<DType, 3> KD,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 2> STD) {
  /* declarations of the variables */
  int b, k, i, D;
  /* Get the index and channels */ 
  b = blockIdx.z;
  k = blockIdx.x;
  i = blockIdx.y;
  D = X.getSize(2);
  /* main operation */
  KD2Op<DType, Acctype> g(X, C, STD);
  KD[b][i][k] = reduceD<Acctype>(g, b, i, k, D);;
}

template<typename DType, typename Acctype>
struct EncGradXOp {
  __device__ EncGradXOp(
    DeviceTensor<DType, 3> gkd,
    DeviceTensor<DType, 3> x,
    DeviceTensor<DType, 2> c,
    DeviceTensor<DType, 2> std) : GKD(gkd), X(x), C(c), STD(std) {}
    // DeviceTensor<DType, 1> s, S(s)
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) {
    return ScalarConvert<DType, Acctype>::to(
      2 * GKD[b][i][k] * (X[b][i][d] - C[k][d]) / 
      (STD[k][d] * STD[k][d]));
  }
  DeviceTensor<DType, 3> GKD;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
  DeviceTensor<DType, 2> STD;
  // DeviceTensor<DType, 1> S;
};

template<typename DType, typename Acctype>
__global__ void Encoding_GradX_kernel (
    DeviceTensor<DType, 3> GKD,
    DeviceTensor<DType, 3> GX,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 2> STD) {
    // DeviceTensor<DType, 1> S
  /* declarations of the variables */
  int b, d, i, K;
  /* Get the index and channels */ 
  b = blockIdx.z;
  i = blockIdx.y;
  d = blockIdx.x;
  K = C.getSize(0);
  /* main operation */
  EncGradXOp<DType, Acctype> g(GKD, X, C, STD);
  GX[b][i][d] = reduceK<Acctype>(g, b, i, d, K);
}

template<typename DType, typename Acctype>
struct EncGradSTDOp {
  __device__ EncGradSTDOp(
    DeviceTensor<DType, 3> gkd,
    DeviceTensor<DType, 3> x,
    DeviceTensor<DType, 2> c,
    DeviceTensor<DType, 2> std) : GKD(gkd), X(x), C(c), STD(std) {}
    // DeviceTensor<DType, 1> s, S(s)
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) {
    return ScalarConvert<DType, Acctype>::to(
      -2 * GKD[b][i][k] * (X[b][i][d] - C[k][d]) *
      (X[b][i][d] - C[k][d]) / (STD[k][d] * STD[k][d] * STD[k][d]));
  }
  DeviceTensor<DType, 3> GKD;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
  DeviceTensor<DType, 2> STD;
  // DeviceTensor<DType, 1> S;
};

template<typename DType, typename Acctype>
__global__ void Encoding_GradCSTD_kernel (
    DeviceTensor<DType, 3> GKD,
    DeviceTensor<DType, 2> GC,
    DeviceTensor<DType, 2> GSTD,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 2> STD) {
  /* declarations of the variables */
  int k, d, B, N;
  /* Get the index and channels */ 
  d = blockIdx.x;
  k = blockIdx.y;
  B = X.getSize(0);
  N = X.getSize(1);
  /* main operation */
  EncGradXOp<DType, Acctype> g1(GKD, X, C, STD);
  EncGradSTDOp<DType, Acctype> g2(GKD, X, C, STD);
  GC[k][d] = -reduceBN<Acctype>(g1, k, d, B, N);
  GSTD[k][d] += reduceBN<Acctype>(g2, k, d, B, N);
}

template<typename DType, typename Acctype>
struct EncGradSTDXOp {
  __device__ EncGradSTDXOp(
    DeviceTensor<DType, 2> gstd,
    DeviceTensor<DType, 3> x,
    DeviceTensor<DType, 2> c,
    DeviceTensor<DType, 2> std) : GSTD(gstd), X(x), C(c), STD(std) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) {
    return ScalarConvert<DType, Acctype>::to(
      GSTD[k][d] * (X[b][i][d] - C[k][d]) / STD[k][d]);
  }
  DeviceTensor<DType, 2> GSTD;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
  DeviceTensor<DType, 2> STD;
};

template<typename DType, typename Acctype>
__global__ void Encoding_GradSTDX_kernel (
    DeviceTensor<DType, 2> GSTD,
    DeviceTensor<DType, 3> GX,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 2> STD,
    int N) {
  /* declarations of the variables */
  int b, d, i, K;
  /* Get the index and channels */ 
  b = blockIdx.z;
  i = blockIdx.y;
  d = blockIdx.x;
  K = C.getSize(0);
  /* main operation */
  EncGradSTDXOp<DType, Acctype> g(GSTD, X, C, STD);
  GX[b][i][d] += reduceK<Acctype>(g, b, i, d, K) / N;
}

template<typename DType, typename Acctype>
struct AggOpV2 {
  __device__ AggOpV2(DeviceTensor<DType, 3> a,
                     DeviceTensor<DType, 3> x,
                     DeviceTensor<DType, 2> c,
                     DeviceTensor<DType, 2> std) : A(a), X(x), C(c), STD(std) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) {
    return ScalarConvert<DType, Acctype>::to(A[b][i][k] * (X[b][i][d] - C[k][d]) /
                                             STD[k][d]);
  }
  DeviceTensor<DType, 3> A;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
  DeviceTensor<DType, 2> STD;
};

template<typename DType, typename Acctype>
__global__ void AggregateV2_Forward_kernel (
    DeviceTensor<DType, 3> E,
    DeviceTensor<DType, 3> A,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 2> STD) {
  /* declarations of the variables */
  int b, k, d, N;
  /* Get the index and channels */ 
  b = blockIdx.z;
  d = blockIdx.x;
  k = blockIdx.y;
  N = X.getSize(1);
  /* main operation */
  AggOpV2<DType, Acctype> g(A, X, C, STD);
  E[b][k][d] = reduceN<Acctype>(g, b, k, d, N);
}

template<typename DType, typename Acctype>
struct AggV2BackOp {
  __device__ AggV2BackOp(DeviceTensor<DType, 3> g,
                         DeviceTensor<DType, 3> x,
                         DeviceTensor<DType, 2> c,
                         DeviceTensor<DType, 2> std) : G(g), X(x), C(c), STD(std) {}
  __device__ __forceinline__ Acctype operator()(int b, int i, int k, int d) {
    return ScalarConvert<DType, Acctype>::to(G[b][k][d] * (X[b][i][d] - C[k][d]) /
                                             STD[k][d]);
  }
  DeviceTensor<DType, 3> G;
  DeviceTensor<DType, 3> X;
  DeviceTensor<DType, 2> C;
  DeviceTensor<DType, 2> STD;
};

template<typename DType, typename Acctype>
__global__ void AggregateV2_Backward_kernel (
    DeviceTensor<DType, 3> GA,
    DeviceTensor<DType, 3> GE,
    DeviceTensor<DType, 3> A,
    DeviceTensor<DType, 3> X,
    DeviceTensor<DType, 2> C,
    DeviceTensor<DType, 2> STD) {
  /* declarations of the variables */
  int b, k, i, D;
  /* Get the index and channels */ 
  b = blockIdx.z;
  i = blockIdx.y;
  k = blockIdx.x;
  D = GE.getSize(2);
  /* main operation */
  AggV2BackOp<DType, Acctype> g(GE, X, C, STD);
  GA[b][i][k] = reduceD<Acctype>(g, b, i, k, D);
}

} // namespace

at::Tensor Encoding_Dist_Inference_Forward_CUDA(
    const at::Tensor X_,
    const at::Tensor C_,
    const at::Tensor STD_) {
    // const at::Tensor S_,
  // X \in R^{B, N, D}, C \in R^{K, D}, S \in R^K
243
  auto KD_ = torch::zeros({X_.size(0), X_.size(1), C_.size(0)}, X_.options());
Hang Zhang's avatar
Hang Zhang committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
  // E(x), E(x^2)
  int N = X_.size(0) * X_.size(1);
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  dim3 blocks(C_.size(0), X_.size(1), X_.size(0));
  dim3 threads(getNumThreads(C_.size(1)));
  // calculate the kernel distance
  AT_DISPATCH_FLOATING_TYPES(X_.type(), "Encoding_Dist_Inference_Forward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> KD = devicetensor<scalar_t, 3>(KD_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 2> STD = devicetensor<scalar_t, 2>(STD_);
    /* kernel function */
    Encoding_Dist_Forward_kernel<scalar_t, scalar_t>
        <<<blocks, threads, 0, stream>>> (KD, X, C, STD);
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return KD_;
}

std::vector<at::Tensor> Encoding_Dist_Inference_Backward_CUDA(
    const at::Tensor GKD_,
    const at::Tensor KD_,
    const at::Tensor X_,
    const at::Tensor C_,
    const at::Tensor STD_) {
  auto GX_ = at::zeros_like(X_);
  auto GC_ = at::zeros_like(C_);
  auto GSTD_ = at::zeros_like(STD_);
  /* kernel function */
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  dim3 blocks1(X_.size(2), X_.size(1), X_.size(0));
  dim3 threads1(getNumThreads(C_.size(0)));
  dim3 blocks2(C_.size(1), C_.size(0));
  dim3 threads2(getNumThreads(X_.size(1)));
  int N = X_.size(0) * X_.size(1);
  AT_DISPATCH_FLOATING_TYPES(X_.type(), "Encoding_Dist_Backward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> GKD = devicetensor<scalar_t, 3>(GKD_);
    DeviceTensor<scalar_t, 2> GSTD = devicetensor<scalar_t, 2>(GSTD_);
    DeviceTensor<scalar_t, 3> GX = devicetensor<scalar_t, 3>(GX_);
    DeviceTensor<scalar_t, 2> GC = devicetensor<scalar_t, 2>(GC_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 2> STD = devicetensor<scalar_t, 2>(STD_);
    Encoding_GradX_kernel<scalar_t, scalar_t>
      <<<blocks1, threads1, 0, stream>>> (GKD, GX, X, C, STD);
    AT_ASSERT(cudaGetLastError() == cudaSuccess);
    Encoding_GradCSTD_kernel<scalar_t, scalar_t>
      <<<blocks2, threads2, 0, stream>>> (GKD, GC, GSTD, X, C, STD);
    AT_ASSERT(cudaGetLastError() == cudaSuccess);
  }));
  return {GX_, GC_, GSTD_};
}

std::vector<at::Tensor> Encoding_Dist_Forward_CUDA(
    const at::Tensor X_,
    const at::Tensor C_,
    double eps) {
    // const at::Tensor S_,
  // X \in R^{B, N, D}, C \in R^{K, D}, S \in R^K
305
  auto KD_ = torch::zeros({X_.size(0), X_.size(1), C_.size(0)}, X_.options());
Hang Zhang's avatar
Hang Zhang committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
  // E(x), E(x^2)
  int N = X_.size(0) * X_.size(1);
  auto SVar_ = (X_.pow(2).sum(0).sum(0).view({1, X_.size(2)}) -
                2 * C_ * X_.sum(0).sum(0).view({1, X_.size(2)})).expand_as(C_) +
               C_.pow(2) * N;
  auto STD_ = at::sqrt(SVar_ / N + eps);
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  dim3 blocks(C_.size(0), X_.size(1), X_.size(0));
  dim3 threads(getNumThreads(C_.size(1)));
  // calculate the kernel distance
  AT_DISPATCH_FLOATING_TYPES(X_.type(), "Encoding_Dist_Forward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> KD = devicetensor<scalar_t, 3>(KD_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 2> STD = devicetensor<scalar_t, 2>(STD_);
    /* kernel function */
    Encoding_Dist_Forward_kernel<scalar_t, scalar_t>
        <<<blocks, threads, 0, stream>>> (KD, X, C, STD);
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return {KD_, STD_, SVar_ / (N - 1)};
}

std::vector<at::Tensor> Encoding_Dist_Backward_CUDA(
    const at::Tensor GKD_,
    const at::Tensor GSTD_,
    const at::Tensor KD_,
    const at::Tensor X_,
    const at::Tensor C_,
    const at::Tensor STD_) {
  auto GX_ = at::zeros_like(X_);
  auto GC_ = at::zeros_like(C_);
  auto GSTD2_ = GSTD_.clone();
  /* kernel function */
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  dim3 blocks1(X_.size(2), X_.size(1), X_.size(0));
  dim3 threads1(getNumThreads(C_.size(0)));
  dim3 blocks2(C_.size(1), C_.size(0));
  dim3 threads2(getNumThreads(X_.size(1)));
  int N = X_.size(0) * X_.size(1);
  AT_DISPATCH_FLOATING_TYPES(X_.type(), "Encoding_Dist_Backward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> GKD = devicetensor<scalar_t, 3>(GKD_);
    DeviceTensor<scalar_t, 2> GSTD = devicetensor<scalar_t, 2>(GSTD2_);
    DeviceTensor<scalar_t, 3> GX = devicetensor<scalar_t, 3>(GX_);
    DeviceTensor<scalar_t, 2> GC = devicetensor<scalar_t, 2>(GC_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 2> STD = devicetensor<scalar_t, 2>(STD_);
    Encoding_GradX_kernel<scalar_t, scalar_t>
      <<<blocks1, threads1, 0, stream>>> (GKD, GX, X, C, STD);
    AT_ASSERT(cudaGetLastError() == cudaSuccess);
    Encoding_GradCSTD_kernel<scalar_t, scalar_t>
      <<<blocks2, threads2, 0, stream>>> (GKD, GC, GSTD, X, C, STD);
    AT_ASSERT(cudaGetLastError() == cudaSuccess);
    Encoding_GradSTDX_kernel<scalar_t, scalar_t>
      <<<blocks1, threads1, 0, stream>>> (GSTD, GX, X, C, STD, N);
    AT_ASSERT(cudaGetLastError() == cudaSuccess);
  }));
  // d_sigma/d_c
  GC_ = GC_ - GSTD2_ * (X_.mean(0).mean(0) - C_) / STD_;
  return {GX_, GC_};
}

at::Tensor AggregateV2_Forward_CUDA(
    const at::Tensor A_,
    const at::Tensor X_,
    const at::Tensor C_,
    const at::Tensor STD_) {
  /* Device tensors */
377
  auto E_ = torch::zeros({A_.size(0), C_.size(0), C_.size(1)}, A_.options());
Hang Zhang's avatar
Hang Zhang committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
  // auto IS_ = 1.0f / (S_ + eps).sqrt();
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  // B, K, D
  dim3 blocks(C_.size(1), C_.size(0), X_.size(0));
  dim3 threads(getNumThreads(X_.size(1)));

  AT_DISPATCH_FLOATING_TYPES(A_.type(), "Aggregate_Forward_CUDA", ([&] {
    DeviceTensor<scalar_t, 3> E = devicetensor<scalar_t, 3>(E_);
    DeviceTensor<scalar_t, 3> A = devicetensor<scalar_t, 3>(A_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 2> STD = devicetensor<scalar_t, 2>(STD_);
    /* kernel function */
    AggregateV2_Forward_kernel<scalar_t, scalar_t>
      <<<blocks, threads, 0, stream>>>(E, A, X, C, STD);
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return E_;
}

std::vector<at::Tensor> AggregateV2_Backward_CUDA(
    const at::Tensor GE_,
    const at::Tensor E_,
    const at::Tensor A_,
    const at::Tensor X_,
    const at::Tensor C_,
    const at::Tensor STD_) {
  auto gradA_ = at::zeros_like(A_);
  auto gradX_ = at::bmm(A_ , (GE_ / STD_.unsqueeze(0)));
  auto gradC_ = -(A_.sum(1).unsqueeze(2) * GE_ / STD_.unsqueeze(0)).sum(0);
  auto gradSTD_ = -(GE_ * E_).sum(0) / STD_;
  // auto gradS_ = -0.5 * (GE_ * E_).sum(2).sum(0) / S_;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  // B, K, D
  dim3 blocks(C_.size(0), X_.size(1), X_.size(0));
  dim3 threads(getNumThreads(C_.size(1)));
  AT_DISPATCH_FLOATING_TYPES(A_.type(), "Aggregate_Backward_CUDA", ([&] {
    /* Device tensors */
    DeviceTensor<scalar_t, 3> GA = devicetensor<scalar_t, 3>(gradA_);
    DeviceTensor<scalar_t, 3> GE = devicetensor<scalar_t, 3>(GE_);
    DeviceTensor<scalar_t, 3> A = devicetensor<scalar_t, 3>(A_);
    DeviceTensor<scalar_t, 3> X = devicetensor<scalar_t, 3>(X_);
    DeviceTensor<scalar_t, 2> C = devicetensor<scalar_t, 2>(C_);
    DeviceTensor<scalar_t, 2> STD = devicetensor<scalar_t, 2>(STD_);
    AggregateV2_Backward_kernel<scalar_t, scalar_t>
      <<<blocks, threads, 0, stream>>> (GA, GE, A, X, C, STD);
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return {gradA_, gradX_, gradC_, gradSTD_};
}