get_transform.py 2.9 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
import torch
from torchvision.transforms import *
from .transforms import *

def get_transform(dataset, base_size=None, crop_size=224, rand_aug=False, etrans=True, **kwargs):
    normalize = Normalize(mean=[0.485, 0.456, 0.406],
                          std=[0.229, 0.224, 0.225])
    base_size = base_size if base_size is not None else int(1.0 * crop_size / 0.875)
    if dataset == 'imagenet':
        train_transforms = []
        val_transforms = []
        if rand_aug:
            from .autoaug import RandAugment
            train_transforms.append(RandAugment(2, 12))
        if etrans:
            train_transforms.extend([
                ERandomCrop(crop_size),
            ])
            val_transforms.extend([
                ECenterCrop(crop_size),
            ])
            
        else:
            train_transforms.extend([
                RandomResizedCrop(crop_size),
            ])
            val_transforms.extend([
                Resize(base_size),
                CenterCrop(crop_size),
            ])
        train_transforms.extend([
Hang Zhang's avatar
Hang Zhang committed
39
            RandomHorizontalFlip(),
Hang Zhang's avatar
Hang Zhang committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            ColorJitter(0.4, 0.4, 0.4),
            ToTensor(),
            Lighting(0.1, _imagenet_pca['eigval'], _imagenet_pca['eigvec']),
            normalize,
        ])
        val_transforms.extend([
            ToTensor(),
            normalize,
        ])
        transform_train = Compose(train_transforms)
        transform_val = Compose(val_transforms)
    elif dataset == 'minc':
        transform_train = Compose([
            Resize(base_size),
            RandomResizedCrop(crop_size),
            RandomHorizontalFlip(),
            ColorJitter(0.4, 0.4, 0.4),
            ToTensor(),
            Lighting(0.1, _imagenet_pca['eigval'], _imagenet_pca['eigvec']),
            normalize,
        ])
        transform_val = Compose([
            Resize(base_size),
            CenterCrop(crop_size),
            ToTensor(),
            normalize,
        ])
    elif dataset == 'cifar10':
Hang Zhang's avatar
Hang Zhang committed
68
69
70
71
72
73
        transform_train = Compose([
            RandomCrop(32, padding=4),
            RandomHorizontalFlip(),
            ToTensor(),
            Normalize((0.4914, 0.4822, 0.4465), 
                      (0.2023, 0.1994, 0.2010)),
Hang Zhang's avatar
Hang Zhang committed
74
        ])
Hang Zhang's avatar
Hang Zhang committed
75
76
77
        transform_val = Compose([
            ToTensor(),
            Normalize((0.4914, 0.4822, 0.4465), 
Hang Zhang's avatar
Hang Zhang committed
78
79
80
81
82
83
84
85
86
87
88
89
                    (0.2023, 0.1994, 0.2010)),
        ])
    return transform_train, transform_val

_imagenet_pca = {
    'eigval': torch.Tensor([0.2175, 0.0188, 0.0045]),
    'eigvec': torch.Tensor([
        [-0.5675,  0.7192,  0.4009],
        [-0.5808, -0.0045, -0.8140],
        [-0.5836, -0.6948,  0.4203],
    ])
}