verify.py 5.23 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

from __future__ import print_function
import os
import argparse
from tqdm import tqdm

import torch
import torch.nn as nn

import encoding
from encoding.utils import (accuracy, AverageMeter, MixUpWrapper, LR_Scheduler)

class Options():
    def __init__(self):
        # data settings
        parser = argparse.ArgumentParser(description='Deep Encoding')
        parser.add_argument('--dataset', type=str, default='cifar10',
                            help='training dataset (default: cifar10)')
        parser.add_argument('--base-size', type=int, default=None,
                            help='base image size')
        parser.add_argument('--crop-size', type=int, default=224,
                            help='crop image size')
        # model params 
        parser.add_argument('--model', type=str, default='densenet',
                            help='network model type (default: densenet)')
        parser.add_argument('--rectify', action='store_true', 
                            default=False, help='rectify convolution')
        parser.add_argument('--rectify-avg', action='store_true', 
                            default=False, help='rectify convolution')
        # training hyper params
        parser.add_argument('--batch-size', type=int, default=128, metavar='N',
                            help='batch size for training (default: 128)')
        parser.add_argument('--workers', type=int, default=32,
                            metavar='N', help='dataloader threads')
        # cuda, seed and logging
        parser.add_argument('--no-cuda', action='store_true', 
                            default=False, help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        # checking point
        parser.add_argument('--resume', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--verify', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--export', type=str, default=None,
                            help='put the path to resuming file if needed')
        self.parser = parser

    def parse(self):
        args = self.parser.parse_args()
        return args


def main():
    # init the args
    args = Options().parse()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    print(args)
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)
    # init dataloader
    _, transform_val = encoding.transforms.get_transform(args.dataset, args.base_size, args.crop_size)
    valset = encoding.datasets.get_dataset(args.dataset, root=os.path.expanduser('~/.encoding/data'),
                                           transform=transform_val, train=False, download=True)
    val_loader = torch.utils.data.DataLoader(
        valset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True if args.cuda else False)
    
    # init the model
    model_kwargs = {'pretrained': True}

    if args.rectify:
        model_kwargs['rectified_conv'] = True
        model_kwargs['rectify_avg'] = args.rectify_avg

    model = encoding.models.get_model(args.model, **model_kwargs)
    print(model)

    if args.cuda:
        model.cuda()
        # Please use CUDA_VISIBLE_DEVICES to control the number of gpus
        model = nn.DataParallel(model)

    # checkpoint
    if args.verify:
        if os.path.isfile(args.verify):
            print("=> loading checkpoint '{}'".format(args.verify))
            model.module.load_state_dict(torch.load(args.verify))
        else:
            raise RuntimeError ("=> no verify checkpoint found at '{}'".\
                format(args.verify))
    elif args.resume is not None:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            model.module.load_state_dict(checkpoint['state_dict'])
        else:
            raise RuntimeError ("=> no resume checkpoint found at '{}'".\
                format(args.resume))

    model.eval()
    top1 = AverageMeter()
    top5 = AverageMeter()
    is_best = False
    tbar = tqdm(val_loader, desc='\r')
    for batch_idx, (data, target) in enumerate(tbar):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        with torch.no_grad():
            output = model(data)
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            top1.update(acc1[0], data.size(0))
            top5.update(acc5[0], data.size(0))

        tbar.set_description('Top1: %.3f | Top5: %.3f'%(top1.avg, top5.avg))

    print('Top1 Acc: %.3f | Top5 Acc: %.3f '%(top1.avg, top5.avg))

    if args.export:
        torch.save(model.module.state_dict(), args.export + '.pth')


if __name__ == "__main__":
    main()