train_dist.py 14.1 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import os
import time
import argparse
import numpy as np
from tqdm import tqdm
from mpi4py import MPI

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel

import encoding
from encoding.nn import LabelSmoothing, NLLMultiLabelSmooth
from encoding.utils import (accuracy, AverageMeter, MixUpWrapper, LR_Scheduler)

class Options():
    def __init__(self):
        # data settings
        parser = argparse.ArgumentParser(description='Deep Encoding')
        parser.add_argument('--dataset', type=str, default='cifar10',
                            help='training dataset (default: cifar10)')
        parser.add_argument('--base-size', type=int, default=None,
                            help='base image size')
        parser.add_argument('--crop-size', type=int, default=224,
                            help='crop image size')
        parser.add_argument('--label-smoothing', type=float, default=0.0,
                            help='label-smoothing (default eta: 0.0)')
        parser.add_argument('--mixup', type=float, default=0.0,
                            help='mixup (default eta: 0.0)')
        parser.add_argument('--rand-aug', action='store_true', 
                            default=False, help='random augment')
        # model params 
        parser.add_argument('--model', type=str, default='densenet',
                            help='network model type (default: densenet)')
        parser.add_argument('--rectify', action='store_true', 
                            default=False, help='rectify convolution')
        parser.add_argument('--rectify-avg', action='store_true', 
                            default=False, help='rectify convolution')
        parser.add_argument('--pretrained', action='store_true', 
                            default=False, help='load pretrianed mode')
        parser.add_argument('--last-gamma', action='store_true', default=False,
                            help='whether to init gamma of the last BN layer in \
                            each bottleneck to 0 (default: False)')
        parser.add_argument('--dropblock-prob', type=float, default=0,
                            help='DropBlock prob. default is 0.')
        parser.add_argument('--final-drop', type=float, default=0,
                            help='final dropout prob. default is 0.')
        # training params
        parser.add_argument('--batch-size', type=int, default=128, metavar='N',
                            help='batch size for training (default: 128)')
        parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
                            help='batch size for testing (default: 256)')
        parser.add_argument('--epochs', type=int, default=120, metavar='N',
                            help='number of epochs to train (default: 600)')
        parser.add_argument('--start_epoch', type=int, default=0, 
                            metavar='N', help='the epoch number to start (default: 1)')
        parser.add_argument('--workers', type=int, default=8,
                            metavar='N', help='dataloader threads')
        # optimizer
        parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
                            help='learning rate (default: 0.1)')
        parser.add_argument('--lr-scheduler', type=str, default='cos', 
                            help='learning rate scheduler (default: cos)')
        parser.add_argument('--warmup-epochs', type=int, default=0,
                            help='number of warmup epochs (default: 0)')
        parser.add_argument('--momentum', type=float, default=0.9, 
                            metavar='M', help='SGD momentum (default: 0.9)')
        parser.add_argument('--weight-decay', type=float, default=1e-4, 
                            metavar ='M', help='SGD weight decay (default: 1e-4)')
        parser.add_argument('--no-bn-wd', action='store_true', 
                            default=False, help='no bias decay')
        # seed
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        # checking point
        parser.add_argument('--resume', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--checkname', type=str, default='default',
                            help='set the checkpoint name')
        # distributed
        parser.add_argument('--world-size', default=1, type=int,
                            help='number of nodes for distributed training')
        parser.add_argument('--rank', default=0, type=int,
                            help='node rank for distributed training')
        parser.add_argument('--dist-url', default='tcp://localhost:23456', type=str,
                            help='url used to set up distributed training')
        parser.add_argument('--dist-backend', default='nccl', type=str,
                            help='distributed backend')
        self.parser = parser

    def parse(self):
        args = self.parser.parse_args()
        return args

def main():
    args = Options().parse()
    ngpus_per_node = torch.cuda.device_count()
    args.world_size = ngpus_per_node * args.world_size
    args.lr = args.lr * args.world_size
    mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))

# global variable
best_pred = 0.0
acclist_train = []
acclist_val = []

def main_worker(gpu, ngpus_per_node, args):
    args.gpu = gpu
    args.rank = args.rank * ngpus_per_node + gpu
    print('rank: {} / {}'.format(args.rank, args.world_size))
    dist.init_process_group(backend=args.dist_backend,
                            init_method=args.dist_url,
                            world_size=args.world_size,
                            rank=args.rank)
    torch.cuda.set_device(args.gpu)
    # init the args
    global best_pred, acclist_train, acclist_val

    if args.gpu == 0:
        print(args)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    # init dataloader
    transform_train, transform_val = encoding.transforms.get_transform(
            args.dataset, args.base_size, args.crop_size, args.rand_aug)
    trainset = encoding.datasets.get_dataset(args.dataset, root=os.path.expanduser('~/.encoding/data'),
                                             transform=transform_train, train=True, download=True)
    valset = encoding.datasets.get_dataset(args.dataset, root=os.path.expanduser('~/.encoding/data'),
                                           transform=transform_val, train=False, download=True)

    train_sampler = torch.utils.data.distributed.DistributedSampler(trainset)
    train_loader = torch.utils.data.DataLoader(
        trainset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True,
        sampler=train_sampler)

    val_sampler = torch.utils.data.distributed.DistributedSampler(valset, shuffle=False)
    val_loader = torch.utils.data.DataLoader(
        valset, batch_size=args.test_batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True,
        sampler=val_sampler)
    
    # init the model
    model_kwargs = {}
    if args.pretrained:
        model_kwargs['pretrained'] = True

    if args.final_drop > 0.0:
        model_kwargs['final_drop'] = args.final_drop

    if args.dropblock_prob > 0.0:
        model_kwargs['dropblock_prob'] = args.dropblock_prob

    if args.last_gamma:
        model_kwargs['last_gamma'] = True

    if args.rectify:
        model_kwargs['rectified_conv'] = True
        model_kwargs['rectify_avg'] = args.rectify_avg
    
    model = encoding.models.get_model(args.model, **model_kwargs)

    if args.dropblock_prob > 0.0:
        from functools import partial
        from encoding.nn import reset_dropblock
        nr_iters = (args.epochs - args.warmup_epochs) * len(train_loader)
        apply_drop_prob = partial(reset_dropblock, args.warmup_epochs*len(train_loader),
                                  nr_iters, 0.0, args.dropblock_prob)
        model.apply(apply_drop_prob)

    if args.gpu == 0:
        print(model)

    if args.mixup > 0:
        train_loader = MixUpWrapper(args.mixup, 1000, train_loader, args.gpu)
        criterion = NLLMultiLabelSmooth(args.label_smoothing)
    elif args.label_smoothing > 0.0:
        criterion = LabelSmoothing(args.label_smoothing)
    else:
        criterion = nn.CrossEntropyLoss()

    model.cuda(args.gpu)
    criterion.cuda(args.gpu)
    model = DistributedDataParallel(model, device_ids=[args.gpu])

    # criterion and optimizer
    if args.no_bn_wd:
        parameters = model.named_parameters()
        param_dict = {}
        for k, v in parameters:
            param_dict[k] = v
        bn_params = [v for n, v in param_dict.items() if ('bn' in n or 'bias' in n)]
        rest_params = [v for n, v in param_dict.items() if not ('bn' in n or 'bias' in n)]
        if args.gpu == 0:
            print(" Weight decay NOT applied to BN parameters ")
            print(f'len(parameters): {len(list(model.parameters()))} = {len(bn_params)} + {len(rest_params)}')
        optimizer = torch.optim.SGD([{'params': bn_params, 'weight_decay': 0 },
                                     {'params': rest_params, 'weight_decay': args.weight_decay}],
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
    else:
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
    # check point
    if args.resume is not None:
        if os.path.isfile(args.resume):
            if args.gpu == 0:
                print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch'] + 1 if args.start_epoch == 0 else args.start_epoch
            best_pred = checkpoint['best_pred']
            acclist_train = checkpoint['acclist_train']
            acclist_val = checkpoint['acclist_val']
            model.module.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            if args.gpu == 0:
                print("=> loaded checkpoint '{}' (epoch {})"
                .format(args.resume, checkpoint['epoch']))
        else:
            raise RuntimeError ("=> no resume checkpoint found at '{}'".\
                format(args.resume))
    scheduler = LR_Scheduler(args.lr_scheduler,
                             base_lr=args.lr,
                             num_epochs=args.epochs,
                             iters_per_epoch=len(train_loader),
                             warmup_epochs=args.warmup_epochs)
    def train(epoch):
        train_sampler.set_epoch(epoch)
        model.train()
        losses = AverageMeter()
        top1 = AverageMeter()
        global best_pred, acclist_train
        for batch_idx, (data, target) in enumerate(train_loader):
            scheduler(optimizer, batch_idx, epoch, best_pred)
            if not args.mixup:
                data, target = data.cuda(args.gpu), target.cuda(args.gpu)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            if not args.mixup:
                acc1 = accuracy(output, target, topk=(1,))
                top1.update(acc1[0], data.size(0))

            losses.update(loss.item(), data.size(0))
            if batch_idx % 100 == 0 and args.gpu == 0:
                if args.mixup:
                    print('Batch: %d| Loss: %.3f'%(batch_idx, losses.avg))
                else:
                    print('Batch: %d| Loss: %.3f | Top1: %.3f'%(batch_idx, losses.avg, top1.avg))

        acclist_train += [top1.avg]

    def validate(epoch):
        model.eval()
        top1 = AverageMeter()
        top5 = AverageMeter()
        global best_pred, acclist_train, acclist_val
        is_best = False
        for batch_idx, (data, target) in enumerate(val_loader):
            data, target = data.cuda(args.gpu), target.cuda(args.gpu)
            with torch.no_grad():
                output = model(data)
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                top1.update(acc1[0], data.size(0))
                top5.update(acc5[0], data.size(0))

        comm = MPI.COMM_WORLD
        # send to master
        sum1 = comm.gather(top1.sum, root=0)
        cnt1 = comm.gather(top1.count, root=0)
        sum5 = comm.gather(top5.sum, root=0)
        cnt5 = comm.gather(top5.count, root=0)
        # get back from master
        sum1 = comm.bcast(sum1, root=0)
        cnt1 = comm.bcast(cnt1, root=0)
        sum5 = comm.bcast(sum5, root=0)
        cnt5 = comm.bcast(cnt5, root=0)
        if args.gpu == 0:
            top1_acc = sum(sum1) / sum(cnt1)
            top5_acc = sum(sum5) / len(cnt5)
            print('Validation: Top1: %.3f | Top5: %.3f'%(top1_acc, top5_acc))

            # save checkpoint
            acclist_val += [top1_acc]
            if top1_acc > best_pred:
                best_pred = top1_acc 
                is_best = True
            encoding.utils.save_checkpoint({
                'epoch': epoch,
                'state_dict': model.module.state_dict(),
                'optimizer': optimizer.state_dict(),
                'best_pred': best_pred,
                'acclist_train':acclist_train,
                'acclist_val':acclist_val,
                }, args=args, is_best=is_best)

    for epoch in range(args.start_epoch, args.epochs):
        tic = time.time()
        train(epoch)
        if epoch % 10 == 0:
            validate(epoch)
        elapsed = time.time() - tic
        if args.gpu == 0:
            print(f'Epoch: {epoch}, Time cost: {elapsed}')

    validate(epoch)

if __name__ == "__main__":
    main()