train_helper.py 2.13 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
Hang Zhang committed
11
import numpy as np
Zhang's avatar
v0.4.2  
Zhang committed
12
import torch
Hang Zhang's avatar
Hang Zhang committed
13
14
15
16
17
import torch.nn as nn

#from ..nn import SyncBatchNorm
from torch.nn.modules.batchnorm import _BatchNorm

Hang Zhang's avatar
Hang Zhang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
__all__ = ['MixUpWrapper', 'get_selabel_vector']

class MixUpWrapper(object):
    def __init__(self, alpha, num_classes, dataloader, device):
        self.alpha = alpha
        self.dataloader = dataloader
        self.num_classes = num_classes
        self.device = device

    def mixup_loader(self, loader):
        def mixup(alpha, num_classes, data, target):
            with torch.no_grad():
                bs = data.size(0)
                c = np.random.beta(alpha, alpha)
                perm = torch.randperm(bs).cuda()

                md = c * data + (1-c) * data[perm, :]
                mt = c * target + (1-c) * target[perm, :]
                return md, mt

        for input, target in loader:
            input, target = input.cuda(self.device), target.cuda(self.device)
            target = torch.nn.functional.one_hot(target, self.num_classes)
            i, t = mixup(self.alpha, self.num_classes, input, target)
            yield i, t

    def __len__(self):
        return len(self.dataloader)

    def __iter__(self):
        return self.mixup_loader(self.dataloader)

Zhang's avatar
v0.4.2  
Zhang committed
50
51

def get_selabel_vector(target, nclass):
Hang Zhang's avatar
Hang Zhang committed
52
    r"""Get SE-Loss Label in a batch
Zhang's avatar
v0.4.2  
Zhang committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    Args:
        predict: input 4D tensor
        target: label 3D tensor (BxHxW)
        nclass: number of categories (int)
    Output:
        2D tensor (BxnClass)
    """
    batch = target.size(0)
    tvect = torch.zeros(batch, nclass)
    for i in range(batch):
        hist = torch.histc(target[i].data.float(), 
                           bins=nclass, min=0,
                           max=nclass-1)
        vect = hist>0
        tvect[i] = vect
    return tvect