autoaug.py 5.31 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# code adapted from:
# https://github.com/kakaobrain/fast-autoaugment
# https://github.com/rpmcruz/autoaugment
import math
import random

import numpy as np
from collections import defaultdict
import PIL, PIL.ImageOps, PIL.ImageEnhance, PIL.ImageDraw

RESAMPLE_MODE=PIL.Image.BICUBIC#PIL.Image.BILINEAR#

RANDOM_MIRROR = True

def ShearX(img, v, resample=RESAMPLE_MODE):  # [-0.3, 0.3]
    assert -0.3 <= v <= 0.3
    if RANDOM_MIRROR and random.random() > 0.5:
        v = -v
    return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0),
                         resample=resample)

def ShearY(img, v, resample=RESAMPLE_MODE):  # [-0.3, 0.3]
    assert -0.3 <= v <= 0.3
    if RANDOM_MIRROR and random.random() > 0.5:
        v = -v
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0),
                         resample=resample)


def TranslateX(img, v, resample=RESAMPLE_MODE):  # [-150, 150] => percentage: [-0.45, 0.45]
    assert -0.45 <= v <= 0.45
    if RANDOM_MIRROR and random.random() > 0.5:
        v = -v
    v = v * img.size[0]
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0),
                         resample=resample)


def TranslateY(img, v, resample=RESAMPLE_MODE):  # [-150, 150] => percentage: [-0.45, 0.45]
    assert -0.45 <= v <= 0.45
    if RANDOM_MIRROR and random.random() > 0.5:
        v = -v
    v = v * img.size[1]
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v),
                         resample=resample)


def TranslateXabs(img, v, resample=RESAMPLE_MODE):  # [-150, 150] => percentage: [-0.45, 0.45]
    assert 0 <= v
    if random.random() > 0.5:
        v = -v
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0),
                         resample=resample)


def TranslateYabs(img, v, resample=RESAMPLE_MODE):  # [-150, 150] => percentage: [-0.45, 0.45]
    assert 0 <= v
    if random.random() > 0.5:
        v = -v
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v),
                         resample=resample)


def Rotate(img, v):  # [-30, 30]
    assert -30 <= v <= 30
    if RANDOM_MIRROR and random.random() > 0.5:
        v = -v
    return img.rotate(v)


def AutoContrast(img, _):
    return PIL.ImageOps.autocontrast(img)


def Invert(img, _):
    return PIL.ImageOps.invert(img)


def Equalize(img, _):
    return PIL.ImageOps.equalize(img)


def Flip(img, _):  # not from the paper
    return PIL.ImageOps.mirror(img)


def Solarize(img, v):  # [0, 256]
    assert 0 <= v <= 256
    return PIL.ImageOps.solarize(img, v)


def SolarizeAdd(img, addition=0, threshold=128):
    img_np = np.array(img).astype(np.int)
    img_np = img_np + addition
    img_np = np.clip(img_np, 0, 255)
    img_np = img_np.astype(np.uint8)
    img = PIL.Image.fromarray(img_np)
    return PIL.ImageOps.solarize(img, threshold)


def Posterize(img, v):  # [4, 8]
    #assert 4 <= v <= 8
    v = int(v)
    return PIL.ImageOps.posterize(img, v)

def Contrast(img, v):  # [0.1,1.9]
    assert 0.1 <= v <= 1.9
    return PIL.ImageEnhance.Contrast(img).enhance(v)


def Color(img, v):  # [0.1,1.9]
    assert 0.1 <= v <= 1.9
    return PIL.ImageEnhance.Color(img).enhance(v)


def Brightness(img, v):  # [0.1,1.9]
    assert 0.1 <= v <= 1.9
    return PIL.ImageEnhance.Brightness(img).enhance(v)


def Sharpness(img, v):  # [0.1,1.9]
    assert 0.1 <= v <= 1.9
    return PIL.ImageEnhance.Sharpness(img).enhance(v)


def CutoutAbs(img, v):  # [0, 60] => percentage: [0, 0.2]
    # assert 0 <= v <= 20
    if v < 0:
        return img
    w, h = img.size
    x0 = np.random.uniform(w)
    y0 = np.random.uniform(h)

    x0 = int(max(0, x0 - v / 2.))
    y0 = int(max(0, y0 - v / 2.))
    x1 = min(w, x0 + v)
    y1 = min(h, y0 + v)

    xy = (x0, y0, x1, y1)
    color = (125, 123, 114)
    # color = (0, 0, 0)
    img = img.copy()
    PIL.ImageDraw.Draw(img).rectangle(xy, color)
    return img


def Cutout(img, v):  # [0, 60] => percentage: [0, 0.2]
    assert 0.0 <= v <= 0.2
    if v <= 0.:
        return img

    v = v * img.size[0]
    return CutoutAbs(img, v)

def rand_augment_list():  # 16 oeprations and their ranges
    l = [
        (AutoContrast, 0, 1),
        (Equalize, 0, 1),
        (Invert, 0, 1),
        (Rotate, 0, 30),
        (Posterize, 0, 4),
        (Solarize, 0, 256),
        (SolarizeAdd, 0, 110),
        (Color, 0.1, 1.9),
        (Contrast, 0.1, 1.9),
        (Brightness, 0.1, 1.9),
        (Sharpness, 0.1, 1.9),
        (ShearX, 0., 0.3),
        (ShearY, 0., 0.3),
        (CutoutAbs, 0, 40),
        (TranslateXabs, 0., 100),
        (TranslateYabs, 0., 100),
    ]

    return l

class RandAugment(object):
    def __init__(self, n, m):
        self.n = n
        self.m = m
        self.augment_list = rand_augment_list()

    def __call__(self, img):
        ops = random.choices(self.augment_list, k=self.n)
        for op, minval, maxval in ops:
            if random.random() > random.uniform(0.2, 0.8):
                continue
            val = (float(self.m) / 30) * float(maxval - minval) + minval
            img = op(img, val)
        return img