cifar10.py 1.7 KB
Newer Older
Zhang's avatar
v0.2.0  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import torch
import torchvision
import torchvision.transforms as transforms

Hang Zhang's avatar
Hang Zhang committed
15
class Dataloader():
Zhang's avatar
v0.2.0  
Zhang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    def __init__(self, args):
        transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), 
                (0.2023, 0.1994, 0.2010)),
        ])
        transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), 
                (0.2023, 0.1994, 0.2010)),
        ])

        trainset = torchvision.datasets.CIFAR10(root='./data', train=True, 
            download=True, transform=transform_train)
        testset = torchvision.datasets.CIFAR10(root='./data', train=False, 
            download=True, transform=transform_test)
    
        kwargs = {'num_workers': 4, 'pin_memory': True} if args.cuda else {}
        trainloader = torch.utils.data.DataLoader(trainset, batch_size=
            args.batch_size, shuffle=True, **kwargs)
        testloader = torch.utils.data.DataLoader(testset, batch_size=
            args.batch_size, shuffle=False, **kwargs)
        self.trainloader = trainloader 
        self.testloader = testloader
    
    def getloader(self):
        return self.trainloader, self.testloader