__init__.py 1.06 KB
Newer Older
Hang Zhang's avatar
init  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import torch
from torch.nn.modules.module import Module
Hang Zhang's avatar
tested  
Hang Zhang committed
13
from torch.autograd import Function
Hang Zhang's avatar
init  
Hang Zhang committed
14
15
16
17
18
from ._ext import encoding_lib

class aggregate(Function):
	def forward(self, A, R):
		# A \in(BxNxK) R \in(BxNxKxD) => E \in(BxNxD)
Hang Zhang's avatar
Hang Zhang committed
19
		self.save_for_backward(A, R)
Hang Zhang's avatar
init  
Hang Zhang committed
20
21
22
23
24
25
		B, N, K, D = R.size()
		E = A.new(B,K,D)
		# TODO support cpu backend
		encoding_lib.Encoding_Float_aggregate_forward(E, A, R)
		return E

Hang Zhang's avatar
Hang Zhang committed
26
27
28
29
30
31
32
	def backward(self, gradE):
		A, R = self.saved_tensors
		gradA = A.clone()
		gradR = R.clone()
		encoding_lib.Encoding_Float_aggregate_backward(gradA, gradR, gradE, 
						A, R)
		return gradA, gradR
Hang Zhang's avatar
init  
Hang Zhang committed
33
34
35
36
37


class Aggregate(Module):
	def forward(self, A, R):
		return aggregate()(A, R)