"vscode:/vscode.git/clone" did not exist on "89d6c794748cf171c74dd680b5a64fa0f422d220"
cityscapes.py 7.6 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
###########################################################################
# Created by: Hang Zhang
# Email: zhang.hang@rutgers.edu
# Copyright (c) 2018
###########################################################################

import os
import sys
import numpy as np
from tqdm import tqdm, trange
from PIL import Image, ImageOps, ImageFilter

import torch
import torch.utils.data as data
import torchvision.transforms as transform

from .base import BaseDataset

class CitySegmentation(BaseDataset):
    NUM_CLASS = 19
    def __init__(self, root=os.path.expanduser('~/.encoding/data'), split='train',
                 mode=None, transform=None, target_transform=None, **kwargs):
        super(CitySegmentation, self).__init__(
            root, split, mode, transform, target_transform, **kwargs)
        #self.root = os.path.join(root, self.BASE_DIR)
        self.images, self.mask_paths = get_city_pairs(self.root, self.split)
        assert (len(self.images) == len(self.mask_paths))
        if len(self.images) == 0:
            raise RuntimeError("Found 0 images in subfolders of: \
                " + self.root + "\n")
        self._indices = np.array(range(-1, 19))
        self._classes = np.array([0, 7, 8, 11, 12, 13, 17, 19, 20, 21, 22,
                                  23, 24, 25, 26, 27, 28, 31, 32, 33])
        self._key = np.array([-1, -1, -1, -1, -1, -1,
                              -1, -1,  0,  1, -1, -1, 
                              2,   3,  4, -1, -1, -1,
                              5,  -1,  6,  7,  8,  9,
                              10, 11, 12, 13, 14, 15,
                              -1, -1, 16, 17, 18])
        self._mapping = np.array(range(-1, len(self._key)-1)).astype('int32')

    def _class_to_index(self, mask):
        # assert the values
        values = np.unique(mask)
        for i in range(len(values)):
            assert(values[i] in self._mapping)
        index = np.digitize(mask.ravel(), self._mapping, right=True)
        return self._key[index].reshape(mask.shape)

    def _preprocess(self, mask_file):
        if os.path.exists(mask_file):
            masks = torch.load(mask_file)
            return masks
        masks = []
        print("Preprocessing mask, this will take a while." + \
            "But don't worry, it only run once for each split.")
        tbar = tqdm(self.mask_paths)
        for fname in tbar:
            tbar.set_description("Preprocessing masks {}".format(fname))
            mask = Image.fromarray(self._class_to_index(
                np.array(Image.open(fname))).astype('int8'))
            masks.append(mask)
        torch.save(masks, mask_file)
        return masks

    def __getitem__(self, index):
        img = Image.open(self.images[index]).convert('RGB')
        if self.mode == 'test':
            if self.transform is not None:
                img = self.transform(img)
            return img, os.path.basename(self.images[index])
        #mask = self.masks[index]
        mask = Image.open(self.mask_paths[index])
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            mask = self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            mask = self.target_transform(mask)
        return img, mask

    def _sync_transform(self, img, mask):
        # random mirror
        if random.random() < 0.5:
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
            mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
        crop_size = self.crop_size
        # random scale (short edge from 480 to 720)
        short_size = random.randint(int(self.base_size*0.5), int(self.base_size*2.5))
        w, h = img.size
        if h > w:
            ow = short_size
            oh = int(1.0 * h * ow / w)
        else:
            oh = short_size
            ow = int(1.0 * w * oh / h)
        img = img.resize((ow, oh), Image.BILINEAR)
        mask = mask.resize((ow, oh), Image.NEAREST)
        # random rotate -10~10, mask using NN rotate
        deg = random.uniform(-10, 10)
        img = img.rotate(deg, resample=Image.BILINEAR)
        mask = mask.rotate(deg, resample=Image.NEAREST)
        # pad crop
        if short_size < crop_size:
            padh = crop_size - oh if oh < crop_size else 0
            padw = crop_size - ow if ow < crop_size else 0
            img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0)
            mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=0)
        # random crop crop_size
        w, h = img.size
        x1 = random.randint(0, w - crop_size)
        y1 = random.randint(0, h - crop_size)
        img = img.crop((x1, y1, x1+crop_size, y1+crop_size))
        mask = mask.crop((x1, y1, x1+crop_size, y1+crop_size))
        # gaussian blur as in PSP
        if random.random() < 0.5:
            img = img.filter(ImageFilter.GaussianBlur(
                radius=random.random()))
        # final transform
        return img, self._mask_transform(mask)

    def _mask_transform(self, mask):
        #target = np.array(mask).astype('int32') - 1
        target = self._class_to_index(np.array(mask).astype('int32'))
        return torch.from_numpy(target).long()

    def __len__(self):
        return len(self.images)

    def make_pred(self, mask):
        values = np.unique(mask)
        for i in range(len(values)):
            assert(values[i] in self._indices)
        index = np.digitize(mask.ravel(), self._indices, right=True)
        return self._classes[index].reshape(mask.shape)


def get_city_pairs(folder, split='train'):
    def get_path_pairs(img_folder, mask_folder):
        img_paths = []  
        mask_paths = []  
        for root, directories, files in os.walk(img_folder):
            for filename in files:
                if filename.endswith(".png"):
                    imgpath = os.path.join(root, filename)
                    foldername = os.path.basename(os.path.dirname(imgpath))
                    maskname = filename.replace('leftImg8bit','gtFine_labelIds')
                    maskpath = os.path.join(mask_folder, foldername, maskname)
                    if os.path.isfile(imgpath) and os.path.isfile(maskpath):
                        img_paths.append(imgpath)
                        mask_paths.append(maskpath)
                    else:
                        print('cannot find the mask or image:', imgpath, maskpath)
        print('Found {} images in the folder {}'.format(len(img_paths), img_folder))
        return img_paths, mask_paths

    if split == 'train' or split == 'val' or split == 'test':
        img_folder = os.path.join(folder, 'leftImg8bit/' + split)
        mask_folder = os.path.join(folder, 'gtFine/'+ split)
        img_paths, mask_paths = get_path_pairs(img_folder, mask_folder)
        return img_paths, mask_paths
    else:
        assert split == 'trainval'
        print('trainval set')
        train_img_folder = os.path.join(folder, 'leftImg8bit/train')
        train_mask_folder = os.path.join(folder, 'gtFine/train')
        val_img_folder = os.path.join(folder, 'leftImg8bit/val')
        val_mask_folder = os.path.join(folder, 'gtFine/val')
        train_img_paths, train_mask_paths = get_path_pairs(train_img_folder, train_mask_folder)
        val_img_paths, val_mask_paths = get_path_pairs(val_img_folder, val_mask_folder)
        img_paths = train_img_paths + val_img_paths
        mask_paths = train_mask_paths + val_mask_paths
    return img_paths, mask_paths