dataloader.py 3.75 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# refer to https://github.com/pytorch/vision/blob/master/torchvision/
import torch.utils.data as data
import torchvision

from PIL import Image
import os
import os.path

IMG_EXTENSIONS = [
    '.jpg', '.JPG', '.jpeg', '.JPEG',
    '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]


def is_image_file(filename):
    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)


def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def make_dataset(dir, class_to_idx):
    images = []
    for target in os.listdir(dir):
        d = os.path.join(dir, target, 'images')
        if not os.path.isdir(d):
            continue

        for root, _, fnames in sorted(os.walk(d)):
            for fname in fnames:
                if is_image_file(fname):
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)

    return images


def default_loader(path):
    return Image.open(path).convert('RGB')


class DatasetLoader(data.Dataset):
    def __init__(self, root, transform=None, target_transform=None,
                 loader=default_loader):
        classes, class_to_idx = find_classes(root)
        imgs = make_dataset(root, class_to_idx)
        if len(imgs) == 0:
            raise(RuntimeError("Found 0 images in subfolders of: " + root \
                + "\nSupported image extensions are: " + \
                ",".join(IMG_EXTENSIONS)))

        self.root = root
        self.imgs = imgs
        self.classes = classes
        self.class_to_idx = class_to_idx
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        path, target = self.imgs[index]
        img = self.loader(path)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return len(self.imgs)


def annotation_reader(root, class_to_idx):
    # read the tiny imagenet annotations.txt and returns the imgs and class
    file = open(os.path.join(root,'val_annotations.txt'), 'r')
    images = []
    for line in file:
        sp = line.split('\t')
        path = os.path.join(root,'images',sp[0])
        item = [path, class_to_idx[sp[1]]]
        images.append(item)

    return images


class ValDatasetLoader(data.Dataset):
    def __init__(self, root, classes, class_to_idx, 
            transform=None, target_transform=None, loader=default_loader):
        imgs = annotation_reader(root, class_to_idx)
        self.root = root
        self.imgs = imgs
        self.classes = classes
        self.class_to_idx = class_to_idx
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        path, target = self.imgs[index]
        img = self.loader(path)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return len(self.imgs)